login
A099446
A Chebyshev transform of A057083.
1
1, 3, 5, 3, -8, -27, -37, -3, 103, 240, 233, -189, -1115, -1941, -1048, 3405, 10747, 14013, -433, -42528, -94127, -85053, 88325, 450387, 748504, 343605, -1448869, -4269507, -5281865, 811728, 17484857, 36819843, 30752293
OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 6_3. The g.f. is the image of the g.f. of A057083 under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
FORMULA
G.f.: (1+x^2)/(1-3*x+5*x^2-3*x^3+x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(Sum_{j=0..n-2*k} C(n-2*k-j, j)*(-3)^j*3^(n-2*k-2*j)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*A057083(n-2*k).
a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(-1)^((n-k)/2)*(1+(-1)^(n+k))*A057083(k)/2.
a(n) = Sum_{k=0..n} A099447(n-k)*(1+(-1)^k)/2.
CROSSREFS
Sequence in context: A100338 A094444 A231641 * A198827 A199668 A318377
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved