login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099446
A Chebyshev transform of A057083.
1
1, 3, 5, 3, -8, -27, -37, -3, 103, 240, 233, -189, -1115, -1941, -1048, 3405, 10747, 14013, -433, -42528, -94127, -85053, 88325, 450387, 748504, 343605, -1448869, -4269507, -5281865, 811728, 17484857, 36819843, 30752293
OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 6_3. The g.f. is the image of the g.f. of A057083 under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
FORMULA
G.f.: (1+x^2)/(1-3x+5x^2-3x^3+x^4); a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*sum{j=0..n-2k, C(n-2k-j, j)(-3)^j*3^(n-2k-2j)}}; a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*A057083(n-2k)); a(n)=sum{k=0..n, binomial((n+k)/2, k)(-1)^((n-k)/2)(1+(-1)^(n+k))A057083(k)/2}; a(n)=sum{k=0..n, A099447(n-k)*binomial(1, k/2)(1+(-1)^k)/2};
CROSSREFS
Sequence in context: A100338 A094444 A231641 * A198827 A199668 A318377
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved