login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099444
A Chebyshev transform of Fib(2n+2).
2
1, 3, 7, 15, 32, 69, 149, 321, 691, 1488, 3205, 6903, 14867, 32019, 68960, 148521, 319873, 688917, 1483735, 3195552, 6882329, 14822619, 31923791, 68754951, 148079008, 318920925, 686866813, 1479319737, 3186042539, 6861847920
OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 6_2 (Miller Institute knot). The g.f. is the image of the g.f. of Fib(2n+2) under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
This sequence is the p-INVERT of A010892 using p(S) = 1 - S - S^2; see A292324. - Clark Kimberling, Sep 26 2017
FORMULA
G.f.: (1+x^2)/(1-3x+3x^2-3x^3+x^4);
a(n) = sum{k=0..floor(n/2), binomial(n-k, k)(-1)^k*Fib(2(n-2k)+2)};
a(n) = sum{k=0..n, binomial((n+k)/2, k)(-1)^((n-k)/2)(1+(-1)^(n+k))Fib(2k+2)/2};
a(n) = sum{k=0..n, A099445(n-k)*binomial(1, k/2)(1+(-1)^k)/2}.
MATHEMATICA
LinearRecurrence[{3, -3, 3, -1}, {1, 3, 7, 15}, 30] (* Harvey P. Dale, Sep 30 2018 *)
CROSSREFS
Cf. A001906.
Sequence in context: A117079 A026745 A139333 * A374678 A132402 A137166
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved