OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 6_2 (Miller Institute knot). The g.f. is the image of that of Fib(2n+2) under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Dror Bar-Natan, The Rolfsen Knot Table
Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-1).
FORMULA
G.f.: -(x-1)*(x+1)*(x^2+1) / (x^4-3*x^3+3*x^2-3*x+1). - Colin Barker, Feb 10 2014
a(n) = 3*a(n-1)-3*a(n-2)+3*a(n-3)-a(n-4) for n>4. - Colin Barker, Feb 10 2014
MATHEMATICA
CoefficientList[Series[(1 - x) (x + 1) (x^2 + 1)/(x^4 - 3 x^3 + 3 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{3, -3, 3, -1}, {1, 3, 6, 12, 25}, 30] (* Harvey P. Dale, Jun 24 2018 *)
PROG
(PARI) Vec(-(x-1)*(x+1)*(x^2+1)/(x^4-3*x^3+3*x^2-3*x+1) + O(x^100)) \\ Colin Barker, Feb 10 2014
(Magma) I:=[1, 3, 6, 12, 25, 54, 117, 252]; [n le 8 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-Self(n-4) : n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
EXTENSIONS
g.f. corrected by Colin Barker, Feb 10 2014
STATUS
approved