login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099448
A Chebyshev transform of A030191 associated to the knot 7_6.
1
1, 5, 19, 65, 216, 715, 2369, 7855, 26051, 86400, 286549, 950345, 3151831, 10453085, 34667784, 114976135, 381319781, 1264651795, 4194233399, 13910227200, 46133441401, 153002131805, 507433471819, 1682909416265, 5581389996216
OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 7_6. The g.f. is the image of the g.f. of A030191 under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
FORMULA
G.f.: (1+x^2)/(1-5x+7x^2-5x^3+x^4); a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*sum{j=0..n-2k, C(n-2k-j, j)(-5)^j*5^(n-2k-2j)}}; a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*A030191(n-2k)); a(n)=sum{k=0..n, binomial((n+k)/2, k)(-1)^((n-k)/2)(1+(-1)^(n+k))A030191(k)/2}; a(n)=sum{k=0..n, A099449(n-k)*binomial(1, k/2)(1+(-1)^k)/2};
MATHEMATICA
CoefficientList[Series[(1+x^2)/(1-5x+7x^2-5x^3+x^4), {x, 0, 30}], x] (* or *)
LinearRecurrence[{5, -7, 5, -1}, {1, 5, 19, 65}, 30] (* Harvey P. Dale, Nov 27 2013 *)
CROSSREFS
Sequence in context: A025568 A001047 A359919 * A239618 A124806 A059509
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved