OFFSET
0,2
COMMENTS
The denominator is a parameterization of the Alexander polynomial for the knot 7_6. The g.f. is the image of the g.f. of A030191 under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)).
LINKS
Dror Bar-Natan, The Rolfsen Knot Table
Index entries for linear recurrences with constant coefficients, signature (5,-7,5,-1).
FORMULA
G.f.: (1+x^2)/(1-5*x+7*x^2-5*x^3+x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(Sum_{j=0..n-2*k} C(n-2*k-j, j)*(-5)^j*5^(n-2*k-2*j)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*A030191(n-2*k).
a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(-1)^((n-k)/2)*(1+(-1)^(n+k))*A030191(k)/2.
a(n) = Sum_{k=0..n} A099449(n-k)*(1+(-1)^k)/2.
MATHEMATICA
CoefficientList[Series[(1+x^2)/(1-5x+7x^2-5x^3+x^4), {x, 0, 30}], x] (* or *)
LinearRecurrence[{5, -7, 5, -1}, {1, 5, 19, 65}, 30] (* Harvey P. Dale, Nov 27 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved