|
|
A001047
|
|
a(n) = 3^n - 2^n.
(Formerly M3887 N1596)
|
|
135
|
|
|
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = sum of the elements in the n-th row of triangle pertaining to A036561. - Amarnath Murthy, Jan 02 2002
Number of 2 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
With offset 1, partial sums of A027649. - Paul Barry, Jun 24 2003
Number of distinct lines through the origin in the n-dimensional lattice of side length 2. A049691 has the values for the 2-dimensional lattice of side length n. - Joshua Zucker, Nov 19 2003
a(n+1)/(n+1)=(3*3^n-2*2^n)/(n+1) is the second binomial transform of the harmonic sequence 1/(n+1). - Paul Barry, Apr 19 2005
a(n+1) = sums of n-th row of A036561. - Reinhard Zumkeller, May 14 2006
The sequence gives the sum of the lengths of the segments in Cantor's dust generating sequence up to the i-th step. Measurement unit = length of the segment of i-th step. - Giorgio Balzarotti, Nov 18 2006
Let T be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xTy if x is a proper subset of y. Then a(n) = |T|. - Ross La Haye, Dec 22 2006
From Alexander Adamchuk, Jan 04 2007: (Start)
a(n) is prime for n = {2,3,5,17,29,31,53,59,101,277,647,1061,2381,...} = A057468(n) Numbers n such that 3^n - 2^n is prime.
p divides a(p) - 1 for prime p.
Quotients (3^p - 2^p - 1)/p, where p = prime(n), are listed in A127071 = {2,6,42,294,15918,122010,7588770,61144062,...}.
Numbers n such that n divides 3^n - 2^n - 1 are listed in A127072 = {1,2, 3,4, 5,7,8,9, 11,13,16,17,19,23,27,29,31,32,37, 41,43,45,47,49, 53,59, 61,64,67, 71,73,79,81,83, 89,97,...}.
Pseudoprimes in A127072(n) include all powers of primes {2,3,7} and some composite numbers that are listed in A127073(n) = {45,245,405,561,637,639,833,891,...}, which includes all Carmichael numbers A002997(n) = {561,1105,1729,2465,2821,6601,8911,10585,15841,29341,...}.
Numbers n such that n^2 divides 3^n - 2^n - 1 are listed in A127074(n) = {1,2,3,4,7,49,179,619,17807,...}.
5 divides a(2n).
5^2 divides a(2*5n).
5^3 divides a(2*5^2n).
5^4 divides a(2*5^3n).
7^2 divides a(6*7n).
13 divides a(4n).
13^2 divides a(4*13n).
19 divides a(3n).
19^2 divides a(3*19n).
23^2 divides a(11n).
23^3 divides a(11*23n).
23^4 divides a(11*23^2n).
29 divides a(7n).
p divides a((p-1)n) for prime p>3.
p divides a((p-1)/2)) for prime p = {5,19,23,29,43,47,53,...} = A097936(n) Primes p such that p divides 3^((p-1)/2) - 2^((p-1)/2). Also primes p such that 6 is a square mod p, except {2,3}, A038876(n).
p^(k+1) divides a(p^k*(p-1)/2*n) for prime p = {5,19,23,29,43,47,53,...} = A097936(n).
p^(k+1) divides a(p^k*(p-1)*n) for prime p>3.
Note the exception that for p = 23, p^(k+2) divides a(p^k*(p-1)/2*n).
There are no more such exceptions for primes p up to 600000. (End)
Final digits of terms follow sequence 1,5,9,5. - Enoch Haga, Nov 26 2007
This is also the second column sequence of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below. - Wolfdieter Lang, Oct 08 2011
Partial sums give A000392. - Jon Perry, Apr 05 2014
For n >= 1, this is also row 2 of A281890: when consecutive positive integers are written as a product of primes in nondecreasing order, "3" occurs in n-th position a(n) times out of every 6^n. - Peter Munn, May 17 2017
|
|
REFERENCES
|
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n=0..200
A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
Nathan Bliss, Ben Fulan, Stephen Lovett and Jeff Sommars, Strong divisibility, cyclotomic polynomials and iterated polynomials, Am. Math. Monthly, Vol. 120, No. 6 (2013), pp. 519-536.
Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
Samuele Giraudo, Combinatorial operads from monoids, Journal of Algebraic Combinatorics, Vol. 41, No. 2 (2015), pp. 493-538; arXiv preprint, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015.
Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42; arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 397.
B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
Germain Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B, Vol. 268 (1969), pp. A577-A579.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Richard Miles, Synchronization points and associated dynamical invariants, Trans. Amer. Math. Soc., Vol. 365, No. 10 (2013), pp. 5503-5524.
Jon Perry, Relation to Collatz problem.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (5,-6).
|
|
FORMULA
|
G.f.: x/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 3*a(n-1) + 2^(n-1). - Jon Perry, Aug 23 2002
Starting 0, 0, 1, 5, 19, ... this is 3^n/3 - 2^n/2 + 0^n/6, the binomial transform of A086218. - Paul Barry, Aug 18 2003
a(n) = A083323(n)-1 = A056182(n)/2 = (A002783(n)-1)/2 = (A003063(n+2)-A003063(n+1))/2. - Ralf Stephan, Jan 12 2004
Binomial transform of A000225. - Ross La Haye, Feb 07 2005
a(n) = Sum_{k=0..n-1} binomial(n, k)*2^k. - Ross La Haye, Aug 20 2005
a(n) = 2^(2n) - A083324(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 1). - Ross La Haye, Jan 11 2006
E.g.f.: exp(3*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A217764(n,1). - Ross La Haye, Mar 27 2013
a(n) = 2*a(n-1) + 3^(n-1). - Toby Gottfried, Mar 28 2013
a(n) = A000244(n) - A000079(n). - Omar E. Pol, Mar 28 2013
a(n) = Sum_{k=0..2} Stirling1(2,k)*(k+1)^n = c_2^{(-n)}, poly-Cauchy numbers. - Takao Komatsu, Mar 28 2013
a(n) = A227048(n,A098294(n)). - Reinhard Zumkeller, Jun 30 2013
a(n+1) = Sum_{k=0...n} 2^k*3^(n-k). - J. M. Bergot, Mar 27 2018
Sum_{n>=1} 1/a(n) = A329064. - Amiram Eldar, Nov 20 2020
|
|
MAPLE
|
a(n)=seq(sum(2^i*3^(n-i), i=0..n), n=0..40); # Giorgio Balzarotti, Nov 18 2006
A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
|
|
MATHEMATICA
|
Table[ 3^n - 2^n, {n, 0, 25} ]
LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
Numerator@NestList[(3#+1)/2&, 1/2, 100] (* Zak Seidov, Oct 03 2011 *)
|
|
PROG
|
(Python) [3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
(Sage) [lucas_number1(n, 5, 6) for n in range(26)] # Zerinvary Lajos, Apr 22 2009
(PARI) {a(n) = 3^n - 2^n};
(MAGMA) [3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
(Haskell)
a001047 n = a001047_list !! n
a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
-- Reinhard Zumkeller, Jun 09 2013
|
|
CROSSREFS
|
Cf. A000225, A016189, A036561, A097936, A038876, A127071, A127072, A127073, A127074, A002997, A057468, A109235, A281890, A329064.
a(n) = row sums of A091913, row 2 of A047969, column 1 of A090888 and column 1 of A038719.
Cf. A000392, A240400.
Cf. partitions: A241766, A241759.
A diagonal of A262307.
Sequence in context: A304162 A001870 A025568 * A099448 A239618 A124806
Adjacent sequences: A001044 A001045 A001046 * A001048 A001049 A001050
|
|
KEYWORD
|
nonn,easy,nice,changed
|
|
AUTHOR
|
N. J. A. Sloane, R. K. Guy
|
|
EXTENSIONS
|
Edited by Charles R Greathouse IV, Mar 24 2010
|
|
STATUS
|
approved
|
|
|
|