login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001117
a(n) = 3^n - 3*2^n + 3.
(Formerly M4219 N1763)
26
1, 0, 0, 6, 36, 150, 540, 1806, 5796, 18150, 55980, 171006, 519156, 1569750, 4733820, 14250606, 42850116, 128746950, 386634060, 1160688606, 3483638676, 10454061750, 31368476700, 94118013006, 282379204836, 847187946150, 2541664501740, 7625194831806
OFFSET
0,4
COMMENTS
Differences of 0. Labeled ordered partitions into 3 parts.
Number of surjections from an n-element set onto a three-element set, with n >= 3. - Mohamed Bouhamida, Dec 15 2007
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x is a proper subset of y or y is a proper subset of x and x and y are intersecting. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
For n>0, the number of rows of n colors using exactly three colors. For n=3, the six rows are ABC, ACB, BAC, BCA, CAB, and CBA. - Robert A. Russell, Sep 25 2018
REFERENCES
H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
FORMULA
a(n) = [n=0] + 3!*S(n, 3).
E.g.f.: 1 + (exp(x)-1)^3.
For n>=3: a(n+1) = 3*a(n) + 3*(2^n - 2) = 3*a(n) + 3*A000918(n). - Geoffrey Critzer, Feb 27 2009
G.f.: (-1-11*x^2+6*x)/((x-1)*(3*x-1)*(2*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
MAPLE
with(combstruct):ZL:=[S, {S=Sequence(U, card=r), U=Set(Z, card>=1)}, labeled]: 1, seq(count(subs(r=3, ZL), size=m), m=1..25); # Zerinvary Lajos, Mar 09 2007
A001117:=-6/(z-1)/(3*z-1)/(2*z-1); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for three leading terms.
MATHEMATICA
k=3; Prepend[Table[k!StirlingS2[n, k], {n, 1, 30}], 1] (* Robert A. Russell, Sep 25 2018 *)
PROG
(PARI) a(n)=3^n-3*2^n+3 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Column 3 of A019538 (n>0).
Sequence in context: A223841 A210322 A056268 * A353664 A353774 A357010
KEYWORD
nonn,easy
EXTENSIONS
Extended with formula and alternate description by Christian G. Bower, Aug 15 1998
Simpler description from Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
STATUS
approved