The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001117 a(n) = 3^n - 3*2^n + 3.
(Formerly M4219 N1763)
1, 0, 0, 6, 36, 150, 540, 1806, 5796, 18150, 55980, 171006, 519156, 1569750, 4733820, 14250606, 42850116, 128746950, 386634060, 1160688606, 3483638676, 10454061750, 31368476700, 94118013006, 282379204836, 847187946150, 2541664501740, 7625194831806 (list; graph; refs; listen; history; text; internal format)



Differences of 0. Labeled ordered partitions into 3 parts.

Number of surjections from an n-element set onto a three-element set, with n >= 3. - Mohamed Bouhamida, Dec 15 2007

Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is not a subset of y and y is not a subset of x and x and y are disjoint, or 1) x is a proper subset of y or y is a proper subset of x and x and y are intersecting. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009

For n>0, the number of rows of n colors using exactly three colors. For n=3, the six rows are ABC, ACB, BAC, BCA, CAB, and CBA. - Robert A. Russell, Sep 25 2018


H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.

A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.


T. D. Noe, Table of n, a(n) for n = 0..200

John Elias, Illustration of initial terms: Interior Sierpinski triangle

K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, 2013.

Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.

P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.

P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Leipzig, 1911.

A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]

Index entries for linear recurrences with constant coefficients, signature (6,-11,6).


a(n) = 3!*S(n, 3).

E.g.f.: (exp(x)-1)^3.

For n>=3: a(n+1) = 3*a(n) + 3*(2^n - 2) = 3*a(n) + 3*A000918(n). - Geoffrey Critzer, Feb 27 2009

G.f.: (-1-11*x^2+6*x)/((x-1)*(3*x-1)*(2*x-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009


with(combstruct):ZL:=[S, {S=Sequence(U, card=r), U=Set(Z, card>=1)}, labeled]: seq(count(subs(r=3, ZL), size=m), m=0..25); # Zerinvary Lajos, Mar 09 2007

A001117:=-6/(z-1)/(3*z-1)/(2*z-1); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for three leading terms.


k=3; Prepend[Table[k!StirlingS2[n, k], {n, 1, 30}], 1] (* Robert A. Russell, Sep 25 2018 *)


(PARI) a(n)=3^n-3*2^n+3 \\ Charles R Greathouse IV, Sep 24 2015


Cf. A000919, A001118.

Column 3 of A019538 (n>0).

Sequence in context: A223841 A210322 A056268 * A353664 A353774 A357010

Adjacent sequences: A001114 A001115 A001116 * A001118 A001119 A001120




N. J. A. Sloane


Extended with formula and alternate description by Christian G. Bower, Aug 15 1998

Simpler description from Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 07:08 EST 2022. Contains 358673 sequences. (Running on oeis4.)