OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (k+1)^(k-1) * Stirling2(n,3*k)/k!.
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (exp(x) - 1)^(3*k) / k!.
E.g.f.: A(x) = exp( -LambertW(-(exp(x) - 1)^3) ).
E.g.f.: A(x) = -LambertW(-(exp(x) - 1)^3)/(exp(x) - 1)^3.
a(n) ~ sqrt(1 + exp(1/3)) * 3^n * n^(n-1) / (exp(n-1) * (3*log(1 + exp(1/3)) - 1)^(n - 1/2)). - Vaclav Kotesovec, Sep 27 2023
MATHEMATICA
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[(Exp[x] - 1)^3*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\3, (3*k)!*(k+1)^(k-1)*stirling(n, 3*k, 2)/k!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(exp(x)-1)^(3*k)/k!)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-(exp(x)-1)^3))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-lambertw(-(exp(x)-1)^3)/(exp(x)-1)^3))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 09 2022
STATUS
approved