login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357012
Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((2 - 2*(1 - x)^(1/2)) / x - 1)).
1
1, 0, 1, 0, 4, 2, 0, 16, 8, 5, 0, 64, 32, 20, 14, 0, 256, 128, 80, 56, 42, 0, 1024, 512, 320, 224, 168, 132, 0, 4096, 2048, 1280, 896, 672, 528, 429, 0, 16384, 8192, 5120, 3584, 2688, 2112, 1716, 1430, 0, 65536, 32768, 20480, 14336, 10752, 8448, 6864, 5720, 4862
OFFSET
0,5
FORMULA
T(n, 0) = 0^n, T(n, n) = CatalanNumber(n), otherwise T(n, k) = 4^(n - k)*T(k, k).
EXAMPLE
[0] 1;
[1] 0, 1;
[2] 0, 4, 2;
[3] 0, 16, 8, 5;
[4] 0, 64, 32, 20, 14;
[5] 0, 256, 128, 80, 56, 42;
[6] 0, 1024, 512, 320, 224, 168, 132;
[7] 0, 4096, 2048, 1280, 896, 672, 528, 429;
[8] 0, 16384, 8192, 5120, 3584, 2688, 2112, 1716, 1430;
[9] 0, 65536, 32768, 20480, 14336, 10752, 8448, 6864, 5720, 4862;
MAPLE
ogf := n -> 0^n + 4^n * ((2 - 2*(1 - x)^(1/2)) / x - 1):
ser := n -> series(ogf(n), x, 32):
seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..n)), n = 0..9);
CROSSREFS
Cf. A000108, A000302, A008549 (row sums), A356651.
Sequence in context: A118441 A244131 A206428 * A334778 A111549 A279411
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 09 2022
STATUS
approved