login
Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((2 - 2*(1 - x)^(1/2)) / x - 1)).
1

%I #4 Sep 09 2022 04:05:45

%S 1,0,1,0,4,2,0,16,8,5,0,64,32,20,14,0,256,128,80,56,42,0,1024,512,320,

%T 224,168,132,0,4096,2048,1280,896,672,528,429,0,16384,8192,5120,3584,

%U 2688,2112,1716,1430,0,65536,32768,20480,14336,10752,8448,6864,5720,4862

%N Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((2 - 2*(1 - x)^(1/2)) / x - 1)).

%F T(n, 0) = 0^n, T(n, n) = CatalanNumber(n), otherwise T(n, k) = 4^(n - k)*T(k, k).

%e [0] 1;

%e [1] 0, 1;

%e [2] 0, 4, 2;

%e [3] 0, 16, 8, 5;

%e [4] 0, 64, 32, 20, 14;

%e [5] 0, 256, 128, 80, 56, 42;

%e [6] 0, 1024, 512, 320, 224, 168, 132;

%e [7] 0, 4096, 2048, 1280, 896, 672, 528, 429;

%e [8] 0, 16384, 8192, 5120, 3584, 2688, 2112, 1716, 1430;

%e [9] 0, 65536, 32768, 20480, 14336, 10752, 8448, 6864, 5720, 4862;

%p ogf := n -> 0^n + 4^n * ((2 - 2*(1 - x)^(1/2)) / x - 1):

%p ser := n -> series(ogf(n), x, 32):

%p seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..n)), n = 0..9);

%Y Cf. A000108, A000302, A008549 (row sums), A356651.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Sep 09 2022