login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356651
Triangle read by rows. T(n, k) = [x^k](0^n + 4^n * ((1 - x)^(-1/2) - 1)).
1
1, 0, 2, 0, 8, 6, 0, 32, 24, 20, 0, 128, 96, 80, 70, 0, 512, 384, 320, 280, 252, 0, 2048, 1536, 1280, 1120, 1008, 924, 0, 8192, 6144, 5120, 4480, 4032, 3696, 3432, 0, 32768, 24576, 20480, 17920, 16128, 14784, 13728, 12870, 0, 131072, 98304, 81920, 71680, 64512, 59136, 54912, 51480, 48620
OFFSET
0,3
FORMULA
T(n, 0) = 0^n, T(n, n) = binomial(2*n, n), otherwise T(n, k) = 4^(n - k)*T(k, k).
EXAMPLE
[0] 1;
[1] 0, 2;
[2] 0, 8, 6;
[3] 0, 32, 24, 20;
[4] 0, 128, 96, 80, 70;
[5] 0, 512, 384, 320, 280, 252;
[6] 0, 2048, 1536, 1280, 1120, 1008, 924;
[7] 0, 8192, 6144, 5120, 4480, 4032, 3696, 3432;
[8] 0, 32768, 24576, 20480, 17920, 16128, 14784, 13728, 12870;
[9] 0, 131072, 98304, 81920, 71680, 64512, 59136, 54912, 51480, 48620;
MAPLE
ogf := n -> 0^n + 4^n * ((1 - x)^(-1/2) - 1):
ser := n -> series(ogf(n), x, 32):
seq(seq(coeff(ser(n), x, k), k = 0..n), n = 0..9);
CROSSREFS
Cf. A000984, A004171, A172060 (row sums), A357012.
Sequence in context: A334071 A243406 A293934 * A316133 A359451 A243443
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 08 2022
STATUS
approved