login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356652
Triangle read by rows. Numerators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers.
1
1, 0, 1, 0, 1, -1, 0, 1, -1, 5, 0, 1, -41, 14, -140, 0, 1, -23, 93, -40, 100, 0, 1, -157, 2948, -3652, 7700, -15400, 0, 1, -341, 18759, -1937936, 520520, -280280, 1401400, 0, 1, -1927, 3478, -7384676, 4364360, -1430000, 5605600, -8008000
OFFSET
0,10
FORMULA
Let r_n(x) = ((2*n)! / (2-2^(2*n))) * Sum_{p in P_n} (-x)^(p_1) * binomial(p_1, p_2) * binomial(p_2, p_3) * ... * binomial(p_{n-1}, p_{n}) * (2*3)^(-p_1) * (4*5)^(-p_2) * ... * (2*n*(2*n+1))^(-p_n), where P_n are the partitions of n and we say that p is a partition of n if and only if p = (p_{1}, ..., p_{n}), the p_{i} are integers, Sum_{1<=i<=n} p_i = n and p_{1} >= p_{2} >= ... >= p_{n} >= 0.
T(n, k) = numerator([x^k] r_n(x)).
EXAMPLE
The rational triangle R(n, k) begins:
[0] 1;
[1] 0, 1/6;
[2] 0, 1/70, -1/21;
[3] 0, 1/434, -1/31, 5/93;
[4] 0, 1/2286, -41/1905, 14/127, -140/1143;
[5] 0, 1/11242, -23/1533, 93/511, -40/73, 100/219;
[6] 0, 1/53222, -157/14329, 2948/10235, -3652/2047, 7700/2047, -15400/6141;
.
Row sums are: 1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, ... (A000367/A002445).
MAPLE
# Using function PTrans from A269941.
R_row := n -> seq(coeffs(p), p in PTrans(n, n -> 1/((2*n)*(2*n + 1)),
n -> (2*n)!/(2-2^(2*n)))): seq(seq(numer(r), r in R_row(n)), n = 0..8);
CROSSREFS
Cf. A356653 (denominators), A269941, A000367, A002445.
Sequence in context: A216718 A184180 A256069 * A267480 A099221 A200415
KEYWORD
sign,frac,tabl
AUTHOR
Peter Luschny, Sep 02 2022
STATUS
approved