login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172060
The number of returns to the origin in all possible one-dimensional walks of length 2n.
2
0, 2, 14, 76, 374, 1748, 7916, 35096, 153254, 661636, 2831300, 12030632, 50826684, 213707336, 894945944, 3734901296, 15540685574, 64496348516, 267060529364, 1103587381256, 4552196053844, 18747042089816, 77092267322984, 316602500019536, 1298657603761244
OFFSET
0,2
COMMENTS
a(n)/4^n is the expected number of times a gambler will return to his break-even point while making 2n equal wagers on the outcome of a fair coin toss. Note the surprisingly low and slow growth of this expectation.
REFERENCES
W. Feller, An Introduction to Probability Theory and its Applications, Vol 1, 3rd ed. New York: Wiley, pp. 67-97, 1968.
LINKS
M. Bona, Non-overlapping permutation patterns, PU. M. A. Vol. 22 (2012), 99-105. - N. J. A. Sloane, Oct 13 2012
FORMULA
a(n) = (2n+1)!/(n!)^2 - 4^n.
a(n) = 4*a(n-1) + binomial(2n,n).
O.g.f.: (1-(1-4x)^(1/2))/(1-4x)^(3/2).
a(n) = A002457(n) - A000302(n). - Wesley Ivan Hurt, Mar 24 2015
a(n) = 2*A000531(n). - R. J. Mathar, Jan 03 2018
EXAMPLE
a(2) = 14 because there are fourteen 0's in the set of all possible walks of length 4: {{-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, -1, 0}, {-1, 0, 1, 0}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, -1, 0}, {1, 0, 1, 0}, {1, 0, 1, 2}, {1, 2, 1, 0}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}}.
MAPLE
A172060:=n->(2*n+1)!/(n!)^2 - 4^n: seq(A172060(n), n=0..30); # Wesley Ivan Hurt, Mar 24 2015
MATHEMATICA
Table[Count[Flatten[Map[Accumulate, Strings[{-1, 1}, n]]], 0], {n, 0, 20, 2}]
CoefficientList[Series[(1 - (1 - 4 x)^(1/2)) / (1 - 4 x)^(3/2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 25 2015 *)
PROG
(Magma) [Factorial(2*n+1)/Factorial(n)^2 - 4^n : n in [0..30]]; // Wesley Ivan Hurt, Mar 24 2015
(Magma) [0] cat [n le 1 select 2 else 4*Self(n-1)+ Binomial(2*n, n): n in [1..30]]; // Vincenzo Librandi, Mar 25 2015
CROSSREFS
Sequence in context: A304049 A197874 A104871 * A277297 A185055 A034573
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Jan 24 2010
STATUS
approved