login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172063
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=6.
12
1, 7, 37, 174, 771, 3300, 13820, 57044, 233108, 945793, 3817351, 15347362, 61520899, 246052888, 982365976, 3916739872, 15599504614, 62076995998, 246866382826, 981218764540, 3898442536366, 15483778158792, 61482966826992
OFFSET
0,2
COMMENTS
This sequence is the 6th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
Apparently the number of peaks in all Dyck paths of semilength n+6 that are 4 steps higher than the preceding peak. - David Scambler, Apr 22 2013
LINKS
FORMULA
a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=6.
a(n) ~ 2^(2*n+7)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+6)*(n+3)*a(n) -(7*n^3+59*n^2+166*n+160)*a(n-1) -2*(2*n+5)*(n+4)*(n+2)*a(n-2)=0. - R. J. Mathar, Feb 19 2016
EXAMPLE
a(4) = C(14,4) - C(13,3) + C(12,2) - C(11,1) + C(10,0) = 7*13*11 - 26*11 + 66 - 11 + 1 = 771.
MAPLE
for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
# 2nd program
for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
MATHEMATICA
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
PROG
(PARI) k=6; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
(Magma) k:=6; m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
(Sage) k=6; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019
CROSSREFS
Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10).
Sequence in context: A169789 A169726 A305781 * A208737 A005061 A099454
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 24 2010
STATUS
approved