The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172063 Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=6. 12
 1, 7, 37, 174, 771, 3300, 13820, 57044, 233108, 945793, 3817351, 15347362, 61520899, 246052888, 982365976, 3916739872, 15599504614, 62076995998, 246866382826, 981218764540, 3898442536366, 15483778158792, 61482966826992 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is the 6th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array. Apparently the number of peaks in all Dyck paths of semilength n+6 that are 4 steps higher than the preceding peak. - David Scambler, Apr 22 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=6. a(n) ~ 2^(2*n+7)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014 Conjecture: 2*n*(n+6)*(n+3)*a(n) -(7*n^3+59*n^2+166*n+160)*a(n-1) -2*(2*n+5)*(n+4)*(n+2)*a(n-2)=0. - R. J. Mathar, Feb 19 2016 EXAMPLE a(4) = C(14,4) - C(13,3) + C(12,2) - C(11,1) + C(10,0) = 7*13*11 - 26*11 + 66 - 11 + 1 = 771. MAPLE for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od; # 2nd program for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od; MATHEMATICA CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^6, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *) PROG (PARI) k=6; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019 (Magma) k:=6; m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019 (Sage) k=6; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019 CROSSREFS Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172064 (k=7), A172065 (k=8), A172066 (k=9), A172067 (k=10). Sequence in context: A169789 A169726 A305781 * A208737 A005061 A099454 Adjacent sequences: A172060 A172061 A172062 * A172064 A172065 A172066 KEYWORD easy,nonn AUTHOR Richard Choulet, Jan 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 01:03 EST 2022. Contains 358594 sequences. (Running on oeis4.)