login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172066
Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=9.
11
1, 10, 67, 376, 1912, 9142, 41941, 186880, 815083, 3498146, 14827487, 62236064, 259187048, 1072567256, 4415408372, 18098359424, 73915594466, 300958990724, 1222228100590, 4952609171080, 20030298812596, 80876902778482
OFFSET
0,2
COMMENTS
This sequence is the 9th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.
LINKS
FORMULA
a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j,n-j), with k=9.
a(n) ~ 2^(2*n+10)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 19 2014
Conjecture: 2*n*(n+9)*(n+5)*a(n) -(7*n^3+94*n^2+427*n+672)*a(n-1) -2*(2*n+7)*(n+6)*(n+4)*a(n-2)=0. - R. J. Mathar, Feb 19 2016
EXAMPLE
a(4) = C(17,4) - C(16,3) + C(15,2) - C(14,1) + C(13,0) = 17*4*5*7 - 16*5*7 + 105 - 14 + 1 = 5*7*(68-16) + 92 = 1912.
MAPLE
for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;
# 2nd program
for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;
MATHEMATICA
CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2014 *)
PROG
(PARI) k=9; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ G. C. Greubel, Feb 17 2019
(Magma) k:=9; m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // G. C. Greubel, Feb 17 2019
(Sage) k=9; m=30; a=((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, m+2).coefficients(x, sparse=False); a[0:m] # G. C. Greubel, Feb 17 2019
CROSSREFS
Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172064 (k=7), A172065 (k=8), A172067 (k=10).
Sequence in context: A266443 A108275 A086443 * A026844 A026875 A378727
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Jan 24 2010
STATUS
approved