login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014300 Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges. 27
1, 2, 7, 24, 86, 314, 1163, 4352, 16414, 62292, 237590, 909960, 3497248, 13480826, 52097267, 201780224, 783051638, 3044061116, 11851853042, 46208337584, 180383564228, 704961896036, 2757926215742, 10799653176704, 42326626862636, 166021623024584, 651683311373788 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also total number of blocks of odd size in all Catalan(n) possible noncrossing partitions of [n].
Convolution of the sequence of central binomial coefficients 1,2,6,20,70,... (A000984) and of the sequence of Fine numbers 1,0,1,2,6,18,... (A000957).
Row sums of A119307. - Paul Barry, May 13 2006
Hankel transform is A079935. - Paul Barry, Jul 17 2009
Also for n>=1 the number of unimodal functions f:[n]->[n] with f(i)<>f(i+1). a(3) = 7: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,3,1], [2,3,2], [3,2,1]. - Alois P. Heinz, May 23 2013
Also, number of sets of n rational numbers on [0,1) such that if x belongs to the set, the fractional part of 2x also belongs to it. - Jianing Song and Andrew Howroyd, May 18 2018
Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function ((-1)^(n + 1) + 1)/2 for n > 0. Then A(n, n) equals a(n) for all n > 0. - John M. Campbell, Jan 20 2019
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p >= 3 and positive integers n and k. - Peter Bala, Jan 07 2022
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Hacène Belbachir and Abdelghani Mehdaoui, Diagonal sums in Pascal pyramid (1, 2, r), Les Annales RECITS (2019) Vol. 6, 45-52.
N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, Discrete Math., 62 (1986), 215-218.
Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
a(n) = (binomial(2*n, n) + A000957(n))/3; [simplified by Alexander Burstein, Nov 24 2023]
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k-1). - Vladeta Jovovic, Aug 28 2002
G.f.: 2*z/(1-4*z+(1+2*z)*sqrt(1-4*z)).
a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-2, n-1).
2*a(n) + a(n-1) = (3*n-1)*Catalan(n-1). - Vladeta Jovovic, Dec 03 2004
a(n) = (-1)^n*Sum_{i=0..n} Sum_{j=n..2*n} (-1)^(i+j)*binomial(j, i). - Benoit Cloitre, Jun 18 2005
a(n) = Sum_{k=0..n} C(2*k,n) [offset 0]. - Paul Barry, May 13 2006
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k-1,k-1). - Paul Barry, Jul 18 2006
From Paul Barry, Jul 17 2009: (Start)
a(n) = Sum_{k=0..n} C(2*n-k,n-k)*(1+(-1)^k)/2.
a(n) = Sum_{k=0..n} C(n+k,k)*(1+(-1)^(n-k))/2. (End)
a(n) is the coefficient of x^(n+1)*y^(n+1) in 1/(1- x^2*y/((1-2*x)*(1-y))). - Ira M. Gessel, Oct 30 2012
a(n) = -binomial(2*n,n-1)*hyper2F1([1,2*n+1],[n+2], 2). - Peter Luschny, Jul 25 2014
a(n) = [x^n] x/((1 - x^2)*(1 - x)^n). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 25 2017
D-finite with recurrence: 2*n*a(n) +(-3*n-4)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 20 2020
a(n) = A333564(n)/2^n. - Peter Bala, Apr 09 2020
a(n) = (1/2)*(binomial(2*n,n) - A072547(n)). - Peter Bala, Mar 28 2023
MAPLE
a:= proc(n) a(n):= `if`(n<3, n, ((12-40*n+21*n^2) *a(n-1)+
2*(3*n-1)*(2*n-3) *a(n-2))/ (2*(3*n-4)*n))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 30 2012
MATHEMATICA
Rest[CoefficientList[Series[2x/(1-4x+(1+2x)Sqrt[1-4x]), {x, 0, 40}], x]] (* Harvey P. Dale, Apr 25 2011 *)
a[n_] := Sum[Binomial[2k, n-1], {k, 0, n-1}]; Array[a, 30] (* Jean-François Alcover, Dec 25 2015, after Paul Barry *)
PROG
(PARI) a(n) = n--; sum(k=0, n, binomial(2*k, n)); \\ Michel Marcus, May 18 2018
(Magma) [(&+[(-1)^(n-k)*Binomial(n+k-1, k-1): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Feb 19 2019
(Sage) [sum((-1)^(n-k)*binomial(n+k-1, k-1) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Feb 19 2019
(Python)
from itertools import count, islice
def A014300_gen(): # generator of terms
yield from (1, 2)
a, c = 1, 1
for n in count(1):
yield (a:=(3*n+5)*(c:=c*((n<<2)+2)//(n+2))-a>>1)
A014300_list = list(islice(A014300_gen(), 20)) # Chai Wah Wu, Apr 26 2023
CROSSREFS
Sequence in context: A052986 A053368 A141753 * A128086 A131824 A256938
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 10:01 EDT 2024. Contains 371967 sequences. (Running on oeis4.)