login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014300
Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
28
1, 2, 7, 24, 86, 314, 1163, 4352, 16414, 62292, 237590, 909960, 3497248, 13480826, 52097267, 201780224, 783051638, 3044061116, 11851853042, 46208337584, 180383564228, 704961896036, 2757926215742, 10799653176704, 42326626862636, 166021623024584, 651683311373788
OFFSET
1,2
COMMENTS
Also total number of blocks of odd size in all Catalan(n) possible noncrossing partitions of [n].
Convolution of the sequence of central binomial coefficients 1,2,6,20,70,... (A000984) and of the sequence of Fine numbers 1,0,1,2,6,18,... (A000957).
Row sums of A119307. - Paul Barry, May 13 2006
Hankel transform is A079935. - Paul Barry, Jul 17 2009
Also for n>=1 the number of unimodal functions f:[n]->[n] with f(i)<>f(i+1). a(3) = 7: [1,2,1], [1,2,3], [1,3,1], [1,3,2], [2,3,1], [2,3,2], [3,2,1]. - Alois P. Heinz, May 23 2013
Also, number of sets of n rational numbers on [0,1) such that if x belongs to the set, the fractional part of 2x also belongs to it. - Jianing Song and Andrew Howroyd, May 18 2018
Let A(i, j) denote the infinite array such that the i-th row of this array is the sequence obtained by applying the partial sum operator i times to the function ((-1)^(n + 1) + 1)/2 for n > 0. Then A(n, n) equals a(n) for all n > 0. - John M. Campbell, Jan 20 2019
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p >= 3 and positive integers n and k. - Peter Bala, Jan 07 2022
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Hacène Belbachir and Abdelghani Mehdaoui, Diagonal sums in Pascal pyramid (1, 2, r), Les Annales RECITS (2019) Vol. 6, 45-52.
N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, Discrete Math., 62 (1986), 215-218.
Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
a(n) = (binomial(2*n, n) + A000957(n))/3; [simplified by Alexander Burstein, Nov 24 2023]
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k-1). - Vladeta Jovovic, Aug 28 2002
G.f.: 2*z/(1-4*z+(1+2*z)*sqrt(1-4*z)).
a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-2, n-1).
2*a(n) + a(n-1) = (3*n-1)*Catalan(n-1). - Vladeta Jovovic, Dec 03 2004
a(n) = (-1)^n*Sum_{i=0..n} Sum_{j=n..2*n} (-1)^(i+j)*binomial(j, i). - Benoit Cloitre, Jun 18 2005
a(n) = Sum_{k=0..n} C(2*k,n) [offset 0]. - Paul Barry, May 13 2006
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k-1,k-1). - Paul Barry, Jul 18 2006
From Paul Barry, Jul 17 2009: (Start)
a(n) = Sum_{k=0..n} C(2*n-k,n-k)*(1+(-1)^k)/2.
a(n) = Sum_{k=0..n} C(n+k,k)*(1+(-1)^(n-k))/2. (End)
a(n) is the coefficient of x^(n+1)*y^(n+1) in 1/(1- x^2*y/((1-2*x)*(1-y))). - Ira M. Gessel, Oct 30 2012
a(n) = -binomial(2*n,n-1)*hyper2F1([1,2*n+1],[n+2], 2). - Peter Luschny, Jul 25 2014
a(n) = [x^n] x/((1 - x^2)*(1 - x)^n). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 25 2017
D-finite with recurrence: 2*n*a(n) +(-3*n-4)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 20 2020
a(n) = A333564(n)/2^n. - Peter Bala, Apr 09 2020
a(n) = (1/2)*(binomial(2*n,n) - A072547(n)). - Peter Bala, Mar 28 2023
MAPLE
a:= proc(n) a(n):= `if`(n<3, n, ((12-40*n+21*n^2) *a(n-1)+
2*(3*n-1)*(2*n-3) *a(n-2))/ (2*(3*n-4)*n))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 30 2012
MATHEMATICA
Rest[CoefficientList[Series[2x/(1-4x+(1+2x)Sqrt[1-4x]), {x, 0, 40}], x]] (* Harvey P. Dale, Apr 25 2011 *)
a[n_] := Sum[Binomial[2k, n-1], {k, 0, n-1}]; Array[a, 30] (* Jean-François Alcover, Dec 25 2015, after Paul Barry *)
PROG
(PARI) a(n) = n--; sum(k=0, n, binomial(2*k, n)); \\ Michel Marcus, May 18 2018
(Magma) [(&+[(-1)^(n-k)*Binomial(n+k-1, k-1): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Feb 19 2019
(Sage) [sum((-1)^(n-k)*binomial(n+k-1, k-1) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Feb 19 2019
(Python)
from itertools import count, islice
def A014300_gen(): # generator of terms
yield from (1, 2)
a, c = 1, 1
for n in count(1):
yield (a:=(3*n+5)*(c:=c*((n<<2)+2)//(n+2))-a>>1)
A014300_list = list(islice(A014300_gen(), 20)) # Chai Wah Wu, Apr 26 2023
KEYWORD
nonn,nice,easy
STATUS
approved