OFFSET
0,5
LINKS
Indranil Ghosh, Rows 0..100, flattened
FORMULA
T(n, k) = T(n, n - k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - Peter Luschny, May 13 2024
EXAMPLE
Triangle begins
1,
1, 1,
1, 5, 1,
1, 11, 11, 1,
1, 19, 46, 19, 1,
1, 29, 127, 127, 29, 1,
1, 41, 281, 517, 281, 41, 1
...
MAPLE
T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
# Peter Luschny, May 13 2024
MATHEMATICA
Flatten[Table[Sum[Binomial[j, k] Binomial[j, n-k], {j, 0, n}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(PARI)
tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j, k)*binomial(j, n-k)), ", "); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 03 2017
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, May 13 2006
STATUS
approved