login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119307
Triangle read by rows: T(n, k) = Sum_{j=0..n} C(j, k)*C(j, n - k).
2
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 46, 19, 1, 1, 29, 127, 127, 29, 1, 1, 41, 281, 517, 281, 41, 1, 1, 55, 541, 1579, 1579, 541, 55, 1, 1, 71, 946, 4001, 6376, 4001, 946, 71, 1, 1, 89, 1541, 8889, 20626, 20626, 8889, 1541, 89, 1, 1, 109, 2377, 17907, 56904, 82994
OFFSET
0,5
LINKS
Indranil Ghosh, Rows 0..100, flattened
FORMULA
T(n, k) = T(n, n - k).
T(n, k) = binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) for k=0..n-1. - Peter Luschny, May 13 2024
EXAMPLE
Triangle begins
1,
1, 1,
1, 5, 1,
1, 11, 11, 1,
1, 19, 46, 19, 1,
1, 29, 127, 127, 29, 1,
1, 41, 281, 517, 281, 41, 1
...
MAPLE
T := (n, k) -> if n = k then 1 else binomial(n, k)^2*hypergeom([1, -k, -n + k], [-n, -n], 1) fi: for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
# Peter Luschny, May 13 2024
MATHEMATICA
Flatten[Table[Sum[Binomial[j, k] Binomial[j, n-k], {j, 0, n}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(PARI)
tabl(nn)={for (n=0, nn, for(k=0, n, print1(sum(j=0, n, binomial(j, k)*binomial(j, n-k)), ", "); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 03 2017
CROSSREFS
Second column is A028387.
Row sums are A014300.
Central coefficients T(2*n, n) are A112029.
Sequence in context: A082046 A132787 A181370 * A296039 A296974 A146954
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 13 2006
STATUS
approved