login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082046
Square array, A(n, k) = (k*n)^2 + 3*k*n + 1, read by antidiagonals.
6
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 29, 19, 1, 1, 29, 55, 55, 29, 1, 1, 41, 89, 109, 89, 41, 1, 1, 55, 131, 181, 181, 131, 55, 1, 1, 71, 181, 271, 305, 271, 181, 71, 1, 1, 89, 239, 379, 461, 461, 379, 239, 89, 1, 1, 109, 305, 505, 649, 701, 649, 505, 305, 109, 1
OFFSET
0,5
LINKS
FORMULA
A(n, k) = (k*n)^2 + 3*k*n + 1 (square array).
A(k, n) = A(n, k).
A(n, n) = T(2*n, n) = A057721(n).
A(n, n+1) = A072025(n).
T(n, k) = (k*(n-k))^2 + 3*k*(n-k) + 1 (antidiagonals).
Sum_{k=0..n} T(n, k) = A082047(n) (antidiagonal sums).
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1 + (-1)^n)*(1 - 2*n).
T(2*n+1, n-1) = T(2*n-1, n-1) = A072025(n-1). (End)
EXAMPLE
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 5, 11, 19, 29, 41, 55, 71, ... A028387;
1, 11, 29, 55, 89, 131, 181, 239, ... A082108;
1, 19, 55, 109, 181, 271, 379, 505, ... A069131;
1, 29, 89, 181, 305, 461, 649, 869, ... ;
1, 41, 131, 271, 461, 701, 991, 1331, ... ;
1, 55, 181, 379, 649, 991, 1405, 1891, ... ;
1, 71, 239, 505, 869, 1331, 1891, 2549, ... ;
Antidiagonals, T(n, k), begin as:
1;
1, 1;
1, 5, 1;
1, 11, 11, 1;
1, 19, 29, 19, 1;
1, 29, 55, 55, 29, 1;
1, 41, 89, 109, 89, 41, 1;
1, 55, 131, 181, 181, 131, 55, 1;
1, 71, 181, 271, 305, 271, 181, 71, 1;
MATHEMATICA
T[n_, k_]:= (k*(n-k))^2 + 3*(k*(n-k)) + 1;
Table[T[n, k], {n, 0, 13}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
PROG
(Magma) [(k*(n-k))^2 + 3*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
(SageMath)
def A082046(n, k): return (k*(n-k))^2 + 3*(k*(n-k)) + 1
flatten([[A082046(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 03 2003
STATUS
approved