OFFSET
0,2
COMMENTS
Longest possible side c of a triangle with integer sides a <= b < c and inradius n. Triangle has sides (n^2+2, n^4+2n^2+1, n^4+3n^2+1). Proved by Joseph Myers, Jun 11 2006.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv:1508.07894 [math.NT], 2015
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = denominator of Integral_{x=0..infinity} sin(n*x)/exp((n^2+1)*x). - Francesco Daddi, Jul 07 2013
MAPLE
with(combinat, fibonacci):seq(fibonacci(5, i), i=0..32); # Zerinvary Lajos, Dec 01 2006
MATHEMATICA
Table[Fibonacci[5, i], {i, 0, 40}]; ..and/or..f[n_]:=n^4+3n^2+1; Array[f, 40, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(Sage) [lucas_number1(5, n, -1) for n in range(0, 33)] # Zerinvary Lajos, May 16 2009
(PARI) vector(40, n, n--; n^4+3*n^2+1) \\ G. C. Greubel, Aug 12 2019
(Magma) [n^4+3*n^2+1: n in [0..40]]; // G. C. Greubel, Aug 12 2019
(GAP) List([0..40], n-> n^4+3*n^2+1); # G. C. Greubel, Aug 12 2019
CROSSREFS
See A120062 for sequences related to integer-sided triangles with integer inradius n.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 27 2000
STATUS
approved