login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057721
a(n) = n^4 + 3*n^2 + 1.
12
1, 5, 29, 109, 305, 701, 1405, 2549, 4289, 6805, 10301, 15005, 21169, 29069, 39005, 51301, 66305, 84389, 105949, 131405, 161201, 195805, 235709, 281429, 333505, 392501, 459005, 533629, 617009, 709805, 812701, 926405, 1051649
OFFSET
0,2
COMMENTS
Longest possible side c of a triangle with integer sides a <= b < c and inradius n. Triangle has sides (n^2+2, n^4+2n^2+1, n^4+3n^2+1). Proved by Joseph Myers, Jun 11 2006.
FORMULA
a(n) = denominator of Integral_{x=0..infinity} sin(n*x)/exp((n^2+1)*x). - Francesco Daddi, Jul 07 2013
MAPLE
with(combinat, fibonacci):seq(fibonacci(5, i), i=0..32); # Zerinvary Lajos, Dec 01 2006
MATHEMATICA
Table[Fibonacci[5, i], {i, 0, 40}]; ..and/or..f[n_]:=n^4+3n^2+1; Array[f, 40, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(Sage) [lucas_number1(5, n, -1) for n in range(0, 33)] # Zerinvary Lajos, May 16 2009
(PARI) vector(40, n, n--; n^4+3*n^2+1) \\ G. C. Greubel, Aug 12 2019
(Magma) [n^4+3*n^2+1: n in [0..40]]; // G. C. Greubel, Aug 12 2019
(GAP) List([0..40], n-> n^4+3*n^2+1); # G. C. Greubel, Aug 12 2019
CROSSREFS
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A120062 [triangles with integer inradius], A120063 [minimum of their longest sides].
Sequence in context: A097344 A153076 A034700 * A085151 A119494 A334544
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 27 2000
STATUS
approved