|
|
A057721
|
|
a(n) = n^4 + 3*n^2 + 1.
|
|
12
|
|
|
1, 5, 29, 109, 305, 701, 1405, 2549, 4289, 6805, 10301, 15005, 21169, 29069, 39005, 51301, 66305, 84389, 105949, 131405, 161201, 195805, 235709, 281429, 333505, 392501, 459005, 533629, 617009, 709805, 812701, 926405, 1051649
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Longest possible side c of a triangle with integer sides a <= b < c and inradius n. Triangle has sides (n^2+2, n^4+2n^2+1, n^4+3n^2+1). Proved by Joseph Myers, Jun 11 2006.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv:1508.07894 [math.NT], 2015
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
|
|
FORMULA
|
a(n) = denominator of Integral_{x=0..infinity} sin(n*x)/exp((n^2+1)*x). - Francesco Daddi, Jul 07 2013
|
|
MAPLE
|
with(combinat, fibonacci):seq(fibonacci(5, i), i=0..32); # Zerinvary Lajos, Dec 01 2006
|
|
MATHEMATICA
|
Table[Fibonacci[5, i], {i, 0, 40}]; ..and/or..f[n_]:=n^4+3n^2+1; Array[f, 40, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
|
|
PROG
|
(Sage) [lucas_number1(5, n, -1) for n in range(0, 33)] # Zerinvary Lajos, May 16 2009
(PARI) vector(40, n, n--; n^4+3*n^2+1) \\ G. C. Greubel, Aug 12 2019
(Magma) [n^4+3*n^2+1: n in [0..40]]; // G. C. Greubel, Aug 12 2019
(GAP) List([0..40], n-> n^4+3*n^2+1); # G. C. Greubel, Aug 12 2019
|
|
CROSSREFS
|
See A120062 for sequences related to integer-sided triangles with integer inradius n.
Cf. A120062 [triangles with integer inradius], A120063 [minimum of their longest sides].
Sequence in context: A097344 A153076 A034700 * A085151 A119494 A334544
Adjacent sequences: A057718 A057719 A057720 * A057722 A057723 A057724
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Oct 27 2000
|
|
STATUS
|
approved
|
|
|
|