login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119494
a(n) = smallest prime number p_k such that 1/p_n + 1/p_{n+1} + ... + 1/p_k > 1.
2
5, 29, 109, 347, 857, 1627, 2999, 4931, 7759, 11677, 16111, 22229, 29269, 37717, 48527, 61057, 75503, 91463, 110567, 131671, 155509, 183587, 214189, 248597, 286073, 325889, 369983, 419459, 473659, 534043, 600631, 667547, 739549, 816779, 901007, 988661
OFFSET
1,1
COMMENTS
Domaratzki, Ellul, Shallit, & Wang call the n-th term of A092325 ϖ(n), and A092325(n) = pi(a(n)). - Charles R Greathouse IV, Aug 08 2016
REFERENCES
J.-M. De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 76, entry 347 and page 108, entry 857.
LINKS
Michael Domaratzki, Keith Ellul, Jeffrey Shallit and Ming-Wei Wang, Non-Uniqueness and Radius of Cyclic Unary NFAs, International Journal of Foundations of Computer Science, Vol. 16, No. 5 (2005) pp. 883-896, alternative link.
FORMULA
a(n) is approximately prime(n)^e.
a(n) = prime(A092325(n)). - Amiram Eldar, Dec 24 2018
EXAMPLE
a(2) = 29 because 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 + 1/29 = 1.0334... > 1 and 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 = 0.9989... < 1.
MATHEMATICA
f[0]={0, 0}; f[n_] := f[n] = Module[{f1=f[n-1]}, p=f1[[1]]; s=f1[[2]]-If[n>1, 1/Prime[n-1], 0]; While[s<1, p=NextPrime[p]; s+=1/p]; {p, s}]; f[#][[1]] & /@ Range[30] (* Amiram Eldar, Dec 24 2018 *)
PROG
(PARI) a(n)=my(s=0.); forprime(p=prime(n), default(primelimit), s+=1/p; if(s>1, return(p)))
CROSSREFS
Sequence in context: A034700 A057721 A085151 * A334544 A268929 A268244
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected by Ray Chandler, Jun 09 2006
Edited by Charles R Greathouse IV, Nov 12 2009
a(35)-a(36) from Amiram Eldar, Dec 24 2018
STATUS
approved