Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Dec 24 2018 06:11:38
%S 5,29,109,347,857,1627,2999,4931,7759,11677,16111,22229,29269,37717,
%T 48527,61057,75503,91463,110567,131671,155509,183587,214189,248597,
%U 286073,325889,369983,419459,473659,534043,600631,667547,739549,816779,901007,988661
%N a(n) = smallest prime number p_k such that 1/p_n + 1/p_{n+1} + ... + 1/p_k > 1.
%C Domaratzki, Ellul, Shallit, & Wang call the n-th term of A092325 ϖ(n), and A092325(n) = pi(a(n)). - _Charles R Greathouse IV_, Aug 08 2016
%D J.-M. De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 76, entry 347 and page 108, entry 857.
%H Amiram Eldar, <a href="/A119494/b119494.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael Domaratzki, Keith Ellul, Jeffrey Shallit and Ming-Wei Wang, <a href="http://dx.doi.org/10.1142/S0129054105003352">Non-Uniqueness and Radius of Cyclic Unary NFAs</a>, International Journal of Foundations of Computer Science, Vol. 16, No. 5 (2005) pp. 883-896, <a href="http://www.cs.umanitoba.ca/~mdomarat/pubs/DESW_dcfs.pdf">alternative link</a>.
%F a(n) is approximately prime(n)^e.
%F a(n) = prime(A092325(n)). - _Amiram Eldar_, Dec 24 2018
%e a(2) = 29 because 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 + 1/29 = 1.0334... > 1 and 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/23 = 0.9989... < 1.
%t f[0]={0,0}; f[n_] := f[n] = Module[{f1=f[n-1]}, p=f1[[1]]; s=f1[[2]]-If[n>1, 1/Prime[n-1], 0]; While[s<1, p=NextPrime[p]; s+=1/p]; {p,s}]; f[#][[1]] & /@ Range[30] (* _Amiram Eldar_, Dec 24 2018 *)
%o (PARI) a(n)=my(s=0.);forprime(p=prime(n),default(primelimit),s+=1/p;if(s>1,return(p)))
%Y Cf. A092325, A016088.
%K nonn
%O 1,1
%A _Charles R Greathouse IV_, May 25 2006
%E Definition corrected by _Ray Chandler_, Jun 09 2006
%E Edited by _Charles R Greathouse IV_, Nov 12 2009
%E a(35)-a(36) from _Amiram Eldar_, Dec 24 2018