login
A119496
Numbers n such that 2^n, 3^n, 5^n and 7^n have even digit sum.
0
15, 64, 83, 90, 106, 107, 120, 122, 135, 168, 173, 180, 181, 185, 193, 198, 222, 229, 239, 242, 289, 299, 347, 356, 364, 369, 407, 424, 447, 458, 462, 470, 479, 481, 503, 542, 552, 568, 580, 583, 607, 612, 648, 657, 676, 683, 684, 688, 742, 758, 787
OFFSET
1,1
EXAMPLE
{2^15,3^15,5^15,7^15}={32768,14348907,30517578125,4747561509943} with even digit sum {26,36,44,64}.
MATHEMATICA
Select[Range[800], AllTrue[Total/@(IntegerDigits/@({2, 3, 5, 7}^#)), EvenQ]&] (* Harvey P. Dale, Oct 13 2022 *)
PROG
(PARI) isok(n) = !(sumdigits(2^n) % 2) && !(sumdigits(3^n) % 2) && !(sumdigits(5^n) % 2) && !(sumdigits(7^n) % 2); \\ Michel Marcus, Oct 10 2013
CROSSREFS
Subsequence of A118734 and of A118867.
Sequence in context: A135972 A138104 A152099 * A044153 A044534 A063483
KEYWORD
base,nonn
AUTHOR
Zak Seidov, May 26 2006
STATUS
approved