|
|
A118734
|
|
Numbers n such that 2^n and 3^n have even digit sum.
|
|
9
|
|
|
6, 15, 33, 37, 42, 43, 44, 46, 47, 50, 54, 55, 57, 58, 64, 67, 70, 71, 77, 82, 83, 84, 85, 90, 95, 102, 106, 107, 112, 116, 120, 122, 126, 129, 135, 136, 138, 140, 142, 149, 154, 161, 168, 170, 173, 176, 178, 179, 180, 181, 185, 193, 195, 198, 200, 207, 209, 210, 217
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
filter:= proc(n) convert(convert(2^n, base, 10), `+`)::even and convert(convert(3^n, base, 10), `+`)::even end proc:
select(filter, [$1..1000]); # Robert Israel, Apr 12 2021
|
|
MATHEMATICA
|
Select[Range[220], And @@ ((Mod[ Plus @@ IntegerDigits[ # ], 2] == 0 &) /@ {2^#, 3^#}) &] (* Ray Chandler, Jun 10 2006 *)
|
|
CROSSREFS
|
Cf. Intersection of A118730 and A118733.
Sequence in context: A121666 A186829 A231452 * A200895 A225278 A213779
Adjacent sequences: A118731 A118732 A118733 * A118735 A118736 A118737
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Zak Seidov, May 22 2006
|
|
EXTENSIONS
|
Extended by Ray Chandler, Jun 10 2006
|
|
STATUS
|
approved
|
|
|
|