login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121666 McKay-Thompson series of class 6C for the Monster group with a(0) = -6. 8
1, -6, 15, -32, 87, -192, 343, -672, 1290, -2176, 3705, -6336, 10214, -16320, 25905, -39936, 61227, -92928, 138160, -204576, 300756, -435328, 626727, -897408, 1271205, -1790592, 2508783, -3487424, 4824825, -6641664, 9083400, -12371904, 16778784, -22630912 (list; graph; refs; listen; history; text; internal format)
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..147 from G. A. Edgar)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * (chi(-q^3) * chi(-q))^6 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q) * eta(q^3) / (eta(q^2) * eta(q^6)))^6 in powers of q.
Euler transform of period 6 sequence [ -6, 0, -12, 0, -6, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u,v) = v * u^2 + (12*v + 64) * u - v^2.
G.f.: 1/x * (Product_{k>0} (1 + x^k) * (1 + x^(3*k)))^-6.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n/3)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Apr 09 2016
EXAMPLE
T6C = 1/q - 6 + 15*q - 32*q^2 + 87*q^3 - 192*q^4 + 343*q^5 - 672*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q, q^2] QPochhammer[ q^3, q^6])^6, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q] QPochhammer[ q^3] / (QPochhammer[ q^2] QPochhammer[ q^6]))^6, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) / (eta(x^2 + A) * eta(x^6 + A)))^6, n))};
(PARI) N=66; q='q+O('q^N); Vec( ((eta(q^1)*eta(q^3))/(eta(q^2)*eta(q^6)))^6/q ) \\ Joerg Arndt, Apr 09 2016
CROSSREFS
Sequence in context: A273853 A192747 A231264 * A186829 A231452 A118734
KEYWORD
sign
AUTHOR
Michael Somos, Aug 14 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 02:45 EST 2023. Contains 367541 sequences. (Running on oeis4.)