login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057722
a(n) = n^4 - 3*n^2 + 1.
4
1, -1, 5, 55, 209, 551, 1189, 2255, 3905, 6319, 9701, 14279, 20305, 28055, 37829, 49951, 64769, 82655, 104005, 129239, 158801, 193159, 232805, 278255, 330049, 388751, 454949, 529255, 612305, 704759, 807301, 920639, 1045505, 1182655
OFFSET
0,3
FORMULA
a(0)=1, a(1)=-1, a(2)=5, a(3)=55, a(4)=209, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Nov 22 2012
From G. C. Greubel, Aug 12 2019: (Start)
G.f.: (1 -6*x +20*x^2 +10*x^3 -x^4)/(1-x)^5.
E.g.f.: (1 -2*x +4*x^2 +6*x^3 +x^4)*exp(x). (End)
a(n) = A028387(n-2)*A028387(n-1). - Lamine Ngom, Oct 27 2020
MAPLE
seq(n^4 -3*n^2 +1, n=0..40); # G. C. Greubel, Aug 12 2019
MATHEMATICA
Table[n^4-3n^2+1, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, -1, 5, 55, 209}, 40] (* Harvey P. Dale, Nov 22 2012 *)
((2*Range[0, 40]^2 -3)^2 -5)/4 (* G. C. Greubel, Aug 12 2019 *)
PROG
(PARI) vector(40, n, n--; n^4 -3*n^2 +1) \\ G. C. Greubel, Aug 12 2019
(Magma) [n^4 -3*n^2 +1: n in [0..40]]; // G. C. Greubel, Aug 12 2019
(Sage) [n^4 -3*n^2 +1 for n in (0..40)] # G. C. Greubel, Aug 12 2019
(GAP) List([0..40], n-> n^4 -3*n^2 +1); # G. C. Greubel, Aug 12 2019
CROSSREFS
Cf. A028387.
Sequence in context: A035305 A292455 A292735 * A078216 A014700 A103326
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Oct 27 2000
STATUS
approved