OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(0)=1, a(1)=-1, a(2)=5, a(3)=55, a(4)=209, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Nov 22 2012
From G. C. Greubel, Aug 12 2019: (Start)
G.f.: (1 -6*x +20*x^2 +10*x^3 -x^4)/(1-x)^5.
E.g.f.: (1 -2*x +4*x^2 +6*x^3 +x^4)*exp(x). (End)
MAPLE
seq(n^4 -3*n^2 +1, n=0..40); # G. C. Greubel, Aug 12 2019
MATHEMATICA
Table[n^4-3n^2+1, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, -1, 5, 55, 209}, 40] (* Harvey P. Dale, Nov 22 2012 *)
((2*Range[0, 40]^2 -3)^2 -5)/4 (* G. C. Greubel, Aug 12 2019 *)
PROG
(PARI) vector(40, n, n--; n^4 -3*n^2 +1) \\ G. C. Greubel, Aug 12 2019
(Magma) [n^4 -3*n^2 +1: n in [0..40]]; // G. C. Greubel, Aug 12 2019
(Sage) [n^4 -3*n^2 +1 for n in (0..40)] # G. C. Greubel, Aug 12 2019
(GAP) List([0..40], n-> n^4 -3*n^2 +1); # G. C. Greubel, Aug 12 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Oct 27 2000
STATUS
approved