The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057719 Prime factors of numbers in A006521 (numbers k that divide 2^k + 1). 6
 3, 19, 163, 571, 1459, 8803, 9137, 17497, 41113, 52489, 78787, 87211, 135433, 139483, 144667, 164617, 174763, 196579, 274081, 370009, 370387, 478243, 760267, 941489, 944803, 1041619, 1220347, 1236787, 1319323, 1465129, 1663579, 1994659 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A prime p is in this sequence iff all prime divisors of ord_p(2)/2 are in this sequence, where ord_p(2) is the order of 2 modulo p. - Max Alekseyev, Jul 30 2006 LINKS Joerg Arndt, Table of n, a(n) for n = 1..220 (terms up to 10^9, terms for n = 1..100 from T. D. Noe) Alexander Kalmynin, On Novák numbers, arXiv:1611.00417 [math.NT], 2016. See Chapter 4 p. 7 Novák primes. C. Smyth, The terms in Lucas Sequences divisible by their indices, JIS 13 (2010) #10.2.4. EXAMPLE 2^171 + 1 == 0 (mod 171), 171 = 3^2*19, 2^13203+1 == 0 (mod 13203), 13203 = 3^4*163. MATHEMATICA S = {2}; Reap[For[p = 3, p < 2 10^6, p = NextPrime[p], f = FactorInteger[ MultiplicativeOrder[2, p]]; If[f[[1, 1]] != 2 || f[[1, 2]] != 1, Continue[]]; f = f[[All, 1]]; If[Length[Intersection[S, f]] == Length[f], S = Union[S, {p}]; Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2018, from PARI *) PROG (PARI) { A057719() = local(S, f); S=Set([2]); forprime(p=3, 10^7, f=factorint(znorder(Mod(2, p))); if(f[1, 1]!=2||f[1, 2]!=1, next); f=f[, 1]; if(length(setintersect(S, Set(f)))==length(f), S=setunion(S, [p]); print1(p, ", "))) } CROSSREFS Cf. A006521, A066364. Cf. A136474, A136473. Sequence in context: A301921 A054765 A232691 * A289258 A199559 A136474 Adjacent sequences: A057716 A057717 A057718 * A057720 A057721 A057722 KEYWORD nonn AUTHOR Ignacio Larrosa Cañestro, Oct 26 2000 EXTENSIONS Edited by Max Alekseyev, Jul 30 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 13:09 EST 2022. Contains 358405 sequences. (Running on oeis4.)