login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066364 Prime divisors of solutions to 10^n == 1 (mod n). 5
3, 37, 163, 757, 1999, 5477, 8803, 9397, 13627, 15649, 36187, 40879, 62597, 106277, 147853, 161839, 215893, 231643, 281683, 295759, 313471, 333667, 338293, 478243, 490573, 607837, 647357, 743933, 988643, 1014877, 1056241, 1168711, 1353173, 1390757, 1487867, 1519591, 1627523, 1835083, 1912969, 2028119, 2029759, 2064529 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Max Alekseyev and Hans Havermann (Max Alekseyev to 501), Table of n, a(n) for n = 1..2060

Makoto Kamada, Factorizations of 11...11 (Repunit).

FORMULA

A prime p is in A066364 iff all prime divisors of ord_p(10) are in A066364, where ord_p(10) is the order of 10 modulo p. - Max Alekseyev, Nov 16 2005

EXAMPLE

10^27-1 = 3^5*37*757*333667*440334654777631 is a solution to the congruence.

MATHEMATICA

fQ[p_] := Block[{fi = First@# & /@ FactorInteger[ MultiplicativeOrder[ 10, p]]}, Union[ MemberQ[ lst, #] & /@ fi] == {True}]; k = 4; lst = {3}; While[k < 180000, If[ p = Prime@ k; fQ@ p, AppendTo[ lst, p]; Print@ p]; k++]; lst (* Robert G. Wilson v, Nov 30 2013 *)

PROG

(PARI) S=Set([3]); forprime(p=7, 10^6, v=factorint(znorder(Mod(10, p)))[, 1]; if(length(setintersect(S, Set(v)))==length(v), S=setunion(S, [p])) ); print(vecsort(eval(S))) } \\ Max Alekseyev, Nov 16 2005

CROSSREFS

Cf. A014950, A001270, A027889, A007138, A114207.

Sequence in context: A046867 A154823 A109835 * A106995 A120076 A119938

Adjacent sequences:  A066361 A066362 A066363 * A066365 A066366 A066367

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Dec 21 2001

EXTENSIONS

Edited by Max Alekseyev, Nov 16 2005

Edited by Hans Havermann, Jul 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 25 00:46 EDT 2017. Contains 285346 sequences.