The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066364 Prime divisors of solutions to 10^n == 1 (mod n). 8
 3, 37, 163, 757, 1999, 5477, 8803, 9397, 13627, 15649, 36187, 40879, 62597, 106277, 147853, 161839, 215893, 231643, 281683, 295759, 313471, 333667, 338293, 478243, 490573, 607837, 647357, 743933, 988643, 1014877, 1056241, 1168711, 1353173, 1390757, 1487867, 1519591, 1627523, 1835083, 1912969, 2028119, 2029759, 2064529 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Max Alekseyev and Hans Havermann (Max Alekseyev to 501), Table of n, a(n) for n = 1..2060 Rüdiger Jehn and Kester Habermann, Properties of terms of OEIS A342810, arXiv:2106.05866 [math.GM], 2021. Makoto Kamada, Factorizations of 11...11 (Repunit). FORMULA A prime p is a term iff all prime divisors of ord_p(10) are terms, where ord_p(10) is the order of 10 modulo p. - Max Alekseyev, Nov 16 2005 EXAMPLE 10^27-1 = 3^5*37*757*333667*440334654777631 is a solution to the congruence. MATHEMATICA fQ[p_] := Block[{fi = First@# & /@ FactorInteger[ MultiplicativeOrder[ 10, p]]}, Union[ MemberQ[ lst, #] & /@ fi] == {True}]; k = 4; lst = {3}; While[k < 180000, If[ p = Prime@ k; fQ@ p, AppendTo[ lst, p]; Print@ p]; k++]; lst (* Robert G. Wilson v, Nov 30 2013 *) PROG (PARI) S=Set([3]); forprime(p=7, 10^6, v=factorint(znorder(Mod(10, p)))[, 1]; if(length(setintersect(S, Set(v)))==length(v), S=setunion(S, [p])) ); print(vecsort(eval(S))) } \\ Max Alekseyev, Nov 16 2005 CROSSREFS Cf. A014950, A001270, A027889, A007138, A114207. Sequence in context: A046867 A154823 A109835 * A106995 A120076 A119938 Adjacent sequences:  A066361 A066362 A066363 * A066365 A066366 A066367 KEYWORD nonn AUTHOR Vladeta Jovovic, Dec 21 2001 EXTENSIONS Edited by Max Alekseyev, Nov 16 2005 Edited by Hans Havermann, Jul 11 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 13:56 EST 2021. Contains 349445 sequences. (Running on oeis4.)