login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232691
E.g.f. satisfies: A(x) = exp( 1/A(x)^2 * Integral A(x)^6 dx ).
2
1, 1, 3, 19, 161, 1857, 25843, 433891, 8378913, 185022049, 4565674115, 125075024211, 3755498096257, 122872235056993, 4345683577199283, 165338206044981091, 6730088764152273857, 291935651271257092161, 13440846879808207921027, 654704450541594973156627
OFFSET
0,3
COMMENTS
Note that G(x) = exp(1/G(x)^2 * Integral G(x)^5 dx) has negative coefficients.
Compare e.g.f. to: B(x) = exp( 1/B(x)^2 * Integral B(x)^2 dx ) where B(y) = Bessel polynomial y_n(-2) (cf. A002119).
FORMULA
E.g.f.: (LambertW(-1, (8*x-3)*exp(-3))/(8*x-3))^(1/4). - Vaclav Kotesovec, Jan 05 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 161*x^4/4! + 1857*x^5/5! +...
Related expansions:
log(A(x)) = x + 2*x^2/2! + 12*x^3/3! + 88*x^4/4! + 976*x^5/5! + 12576*x^6/6! +...
Integral A(x)^6 dx = x + 6*x^2/2! + 48*x^3/3! + 504*x^4/4! + 6576*x^5/5! +...
1/A(x)^2 = 1 - 2*x - 8*x^3/3! - 16*x^4/4! - 384*x^5/5! - 2624*x^6/6! -...
MAPLE
seq(n! * coeff(series((LambertW(-1, (8*x-3)*exp(-3))/(8*x-3))^(1/4), x, n+1), x, n), n=0..20) # Vaclav Kotesovec, Jan 05 2014
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(1/A^2*intformal(A^6+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A301921 A054765 A362660 * A057719 A289258 A199559
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2013
STATUS
approved