login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232694
E.g.f. A(x) satisfies: A'(x) = A(x*A'(x)^4) with A(0)=1.
7
1, 1, 1, 9, 177, 5601, 249681, 14569545, 1062623265, 93853717761, 9810385567329, 1192614883442889, 166310354311947345, 26308546859152889697, 4677436610087462937393, 927353710845763536487305, 203648424149429271943770945, 49245501579619466882211194625, 13045520297945193508654786790337
OFFSET
0,4
COMMENTS
CONJECTURES.
a(n) == 0 (mod 3) for n>=3.
a(n) == 1 (mod 8) for n>=0.
FORMULA
E.g.f. satisfies: A(x) = A'(x/A(x)^4).
E.g.f. satisfies: A(x) = ( x / Series_Reversion( x*A'(x)^4 ) )^(1/4).
a(n) = [x^(n-1)/(n-1)!] A(x)^(4*n-3)/(4*n-3) for n>=1.
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 9*x^3/3! + 177*x^4/4! + 5601*x^5/5! +...
such that
A(x*A'(x)^4) = A'(x) = 1 + x + 9*x^2/2! + 177*x^3/3! + 5601*x^4/4! +...
To illustrate a(n) = [x^(n-1)/(n-1)!] A(x)^(4*n-3)/(4*n-3), create a table of coefficients of x^k/k!, k>=0, in A(x)^(4*n-3), n>=1, like so:
A^1 : [1, 1, 1, 9, 177, 5601, 249681, 14569545, ...];
A^5 : [1, 5, 25, 165, 2145, 55125, 2211225, 120873045, ...];
A^9 : [1, 9, 81, 801, 10449, 218889, 7501761, 373998465, ...];
A^13: [1, 13, 169, 2301, 35841, 731133, 21950409, 974182989, ...];
A^17: [1, 17, 289, 5049, 95217, 2102577, 60325809, 2417773881, ...];
A^21: [1, 21, 441, 9429, 211617, 5243301, 154446201, 5861076165, ...];
A^25: [1, 25, 625, 15825, 414225, 11585625, 364238625, 13752570225, ...];
A^29: [1, 29, 841, 24621, 738369, 23206989, 791747241, 30816074685, ...]; ...
then the diagonal in the above table generates this sequence shift left:
[1/1, 5/5, 81/9, 2301/13, 95217/17, 5243301/21, 364238625/25, 30816074685/29, ...].
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(subst(A, x, x*A'^4 +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal((1/x*serreverse(x/A^4 +x*O(x^n)))^(1/4))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2013
STATUS
approved