OFFSET
0,3
COMMENTS
The denominators of the convergents of [1/3, 4/5, 9/7, 16/9, ...]. To produce Pi the above continued fraction is used. It is formed by n^2/(2*n+1) which starts at n=1. Most numerators of continued fractions are 1 & thus are left out of the brackets. In the case of Pi they vary. Therefore here both numerators & denominators are given. The first 4 convergents are 1/3,5/19,44/160,476/1744. The value of this continued fraction is .273239... . 4*INV(1+.273239...) is Pi. - Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
Starting with offset 1 = row sums of triangle A155729. [Gary W. Adamson & Alexander R. Povolotsky, Jan 25 2009]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..390
K. S. Brown, Integer Sequences Related To Pi
FORMULA
a(n) ~ Pi * (1+sqrt(2))^(n + 1/2) * n^n / (2^(9/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017
MAPLE
A054765 := proc(n)
option remember;
if n <= 1 then
n;
else
(2*n-1)*procname(n-1)+(n-1)^2*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Jul 13 2013
MATHEMATICA
RecurrenceTable[{a[n + 2] == (2*n + 3)*a[n + 1] + (n + 1)^2*a[n],
a[0] == 0, a[1] == 1}, a, {n, 0, 50}] (* G. C. Greubel, Feb 18 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 26 2000
EXTENSIONS
More terms from James A. Sellers, May 27 2000
STATUS
approved