login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301921
Expansion of e.g.f. 1/(1 - (exp(x) - 1)/(1 - (exp(x) - 1)^2/(1 - (exp(x) - 1)^3/(1 - ...)))), a continued fraction.
3
1, 1, 3, 19, 159, 1651, 21303, 324619, 5653119, 110909251, 2424648903, 58430418619, 1537673312079, 43860906193651, 1347852526593303, 44392923532503019, 1560023977386027039, 58259266750803410851, 2303999137417453606503, 96188099015599819297819, 4227325636692027926037999
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k)*A005169(k)*k!.
a(n) ~ c * d^n * n!, where d = 2.19787763261059933075080498218168228... and c = 0.250957960982243982921501085974065... - Vaclav Kotesovec, Dec 20 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 159*x^4/4! + 1651*x^5/5! + 21303*x^6/6! + ...
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(1 + ContinuedFractionK[-(Exp[x] - 1)^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
b[n_] := b[n] = SeriesCoefficient[1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, n}]), {x, 0, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k] k!, {k, 0, n}]; Table[a[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 19 2018
STATUS
approved