Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 20 2018 03:40:39
%S 1,1,3,19,159,1651,21303,324619,5653119,110909251,2424648903,
%T 58430418619,1537673312079,43860906193651,1347852526593303,
%U 44392923532503019,1560023977386027039,58259266750803410851,2303999137417453606503,96188099015599819297819,4227325636692027926037999
%N Expansion of e.g.f. 1/(1 - (exp(x) - 1)/(1 - (exp(x) - 1)^2/(1 - (exp(x) - 1)^3/(1 - ...)))), a continued fraction.
%H Vaclav Kotesovec, <a href="/A301921/b301921.txt">Table of n, a(n) for n = 0..300</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a>
%F a(n) = Sum_{k=0..n} Stirling2(n,k)*A005169(k)*k!.
%F a(n) ~ c * d^n * n!, where d = 2.19787763261059933075080498218168228... and c = 0.250957960982243982921501085974065... - _Vaclav Kotesovec_, Dec 20 2018
%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 159*x^4/4! + 1651*x^5/5! + 21303*x^6/6! + ...
%t nmax = 20; CoefficientList[Series[1/(1 + ContinuedFractionK[-(Exp[x] - 1)^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
%t b[n_] := b[n] = SeriesCoefficient[1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, n}]), {x, 0, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k] k!, {k, 0, n}]; Table[a[n], {n, 0, 20}]
%Y Cf. A005169, A019538, A301923.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jun 19 2018