login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232607
G.f. A(x) satisfies: (A(x) + x*A'(x)) / (A(x) - x*A(x)^2) = Sum_{n>=0} binomial(2*n,n)^2*x^n.
3
1, 3, 19, 159, 1546, 16517, 188246, 2248863, 27844369, 354576634, 4618570090, 61289049293, 826064774033, 11281763625102, 155834042142463, 2173801434825011, 30585769379262567, 433633765794690539, 6189637467948022825, 88886796123324352030, 1283443017706197910489, 18623352714450226405962
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = (1/x)*Series_Reversion(x/F(x)) where F(x) = A(x/F(x)) is the g.f. of A232606.
Limit n->infinity a(n)^(1/n) = 16. - Vaclav Kotesovec, Jul 05 2014
EXAMPLE
G.f.: A(x) = 1 + 3*x + 19*x^2 + 159*x^3 + 1546*x^4 + 16517*x^5 + 188246*x^6 +...
where the g.f. satisfies:
(A(x) + x*A'(x)) / (A(x) - x*A(x)^2) = 1 + 2^2*x + 6^2*x^2 + 20^2*x^3 + 70^2*x^4 + 252^2*x^5 +...+ A000984(n)^2*x^n +...
PROG
(PARI) {a(n)=local(CB2=sum(k=0, n, binomial(2*k, k)^2*x^k)+x*O(x^n), A=1+x*O(x^n));
for(i=1, n, A = 1 + intformal( (CB2-1)*A/x - CB2*A^2)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2013
STATUS
approved