login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232605
Number of compositions of 2n into parts with multiplicity <= n.
4
1, 1, 7, 26, 114, 459, 1892, 7660, 31081, 125464, 506025, 2036706, 8189555, 32894825, 132033140, 529614616, 2123365038, 8509634259, 34092146068, 136546197412, 546774790297, 2189060331762, 8762770476060, 35072837719356, 140363923730474, 561697985182654
OFFSET
0,3
COMMENTS
a(n) = A243081(2n,n) = Sum_{i=0..n} A242447(2n,i).
LINKS
FORMULA
Recurrence: 5*(n-2)*(n-1)*n*(1258*n^4 - 11230*n^3 + 37013*n^2 - 53645*n + 28764)*a(n) = 2*(n-2)*(n-1)*(17612*n^5 - 159736*n^4 + 538872*n^3 - 824111*n^2 + 541051*n - 107568)*a(n-1) - 4*(n-2)*(5032*n^5 - 44925*n^4 + 134332*n^3 - 137541*n^2 - 6614*n + 52596)*a(n-2) - 2*(83028*n^7 - 1074550*n^6 + 5758938*n^5 - 16516699*n^4 + 27297714*n^3 - 25934731*n^2 + 13070460*n - 2661120)*a(n-3) + 8*(n-4)*(n-1)*(2*n-7)*(1258*n^4 - 6198*n^3 + 10871*n^2 - 8277*n + 2160)*a(n-4). - Vaclav Kotesovec, Nov 27 2013
a(n) ~ 2^(2*n-1). - Vaclav Kotesovec, Nov 27 2013
EXAMPLE
a(1) = 1: [2].
a(2) = 7: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2].
a(3) = 26: [6], [5,1], [4,2], [3,3], [2,4], [1,5], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [2,2,2], [1,3,2], [2,1,3], [1,2,3], [1,1,4], [4,1,1], [2,1,2,1], [1,2,2,1], [1,1,3,1], [3,1,1,1], [2,2,1,1], [1,1,2,2], [1,1,1,3], [1,3,1,1], [2,1,1,2], [1,2,1,2].
MAPLE
a:= proc(n) option remember;
`if`(n<5, [1, 1, 7, 26, 114][n+1],
(2*(n-1)*(11092322562903*n^3 -66692687083623*n^2
+117736395568913*n -51473509383358) *a(n-1)
-(17386283060104*n^4 -178154697569624*n^3 +652039987731328*n^2
-984836231488344*n +485931992440304) *a(n-2)
-(89948343833304*n^4 -664733317200192*n^3 +1662507315916082*n^2
-1594206267597886*n +485625773146800) *a(n-3)
+(92866735410328*n^4 -1047423564207444*n^3 +4160804083968884*n^2
-6634447008138888*n +3217864137236880) *a(n-4)
-16*(n-5)*(2*n-9)*(310469340359*n^2 -847919784312*n
+494768703748) *a(n-5)) / (5*n*(n-1)*
(681426847222*n^2 -3587414825361*n +4663189129034)))
end:
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, 0, Min[n/i, k]}]]];
A[n_, k_] := If[k >= n, If[n == 0, 1, 2^(n - 1)], b[n, n, 0, k]];
a[n_] := A[2 n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 31 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A050476 A026617 A240261 * A350473 A349309 A262110
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 26 2013
STATUS
approved