login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350473
a(n) = Fibonacci(n+1)^3 - Fibonacci(n-1)^3.
1
0, 1, 7, 26, 117, 485, 2072, 8749, 37107, 157114, 665665, 2819609, 11944368, 50596649, 214331663, 907922170, 3846022173, 16292007901, 69014058568, 292348234421, 1238407008795, 5245976249306, 22222312038857, 94135224351601, 398763209531232, 1689188062337425
OFFSET
0,3
COMMENTS
See A346513 for Fibonacci(n+1)^3 - Fibonacci(n)^3.
LINKS
Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
FORMULA
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: x*(1 + 4*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4).
a(n) = (4/5)*Fibonacci(3*n) + (-1)^(n)*(3/5)*Fibonacci(n).
a(n) is the numerator of the continued fraction [1,...,1, 2 ,1,...,1, 2 ,1,1,...,1] with the first two runs of 1's of length n-2 and the last run of length n-1. For example, a(4)=117 which is the numerator of the continued fraction [1,1, 2 ,1,1, 2 ,1,1,1].
MATHEMATICA
Differences[Fibonacci[Range[-1, 26]]^3, 1, 2]
PROG
(Python)
from sympy import fibonacci
def A350473(n): return fibonacci(n+1)**3-fibonacci(n-1)**3 # Chai Wah Wu, Jan 05 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Jan 01 2022
STATUS
approved