login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350470
Array read by ascending antidiagonals. T(n, k) = J(k, n) where J are the Jacobsthal polynomials.
5
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 1, 7, 9, 11, 1, 1, 1, 9, 13, 29, 21, 1, 1, 1, 11, 17, 55, 65, 43, 1, 1, 1, 13, 21, 89, 133, 181, 85, 1, 1, 1, 15, 25, 131, 225, 463, 441, 171, 1, 1, 1, 17, 29, 181, 341, 937, 1261, 1165, 341, 1
OFFSET
0,9
FORMULA
T(n, k) = Sum_{j=0..k} binomial(k - j, j)*(2*n)^j.
T(n, k) = ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s) where s = sqrt(8*n + 1).
T(n, k) = [x^k] (1 / (1 - x - 2*n*x^2)).
T(n, k) = hypergeom([1/2 - k/2, -k/2], [-k], -8*n).
EXAMPLE
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
---------------------------------------------------------------------
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ... A001045
[2] 1, 1, 5, 9, 29, 65, 181, 441, 1165, 2929, ... A006131
[3] 1, 1, 7, 13, 55, 133, 463, 1261, 4039, 11605, ... A015441
[4] 1, 1, 9, 17, 89, 225, 937, 2737, 10233, 32129, ... A015443
[5] 1, 1, 11, 21, 131, 341, 1651, 5061, 21571, 72181, ... A015446
[6] 1, 1, 13, 25, 181, 481, 2653, 8425, 40261, 141361, ... A053404
[7] 1, 1, 15, 29, 239, 645, 3991, 13021, 68895, 251189, ... A350468
[8] 1, 1, 17, 33, 305, 833, 5713, 19041, 110449, 415105, ... A168579
[9] 1, 1, 19, 37, 379, 1045, 7867, 26677, 168283, 648469, ... A350469
MAPLE
J := (n, x) -> add(2^k*binomial(n - k, k)*x^k, k = 0..n):
seq(seq(J(k, n-k), k = 0..n), n = 0..10);
MATHEMATICA
T[n_, k_] := Hypergeometric2F1[(1 - k)/2, -k/2, -k, -8 n];
Table[T[n, k], {n, 0, 9}, {k, 0, 9}] // TableForm
(* or *)
T[n_, k_] := With[{s = Sqrt[8*n+1]}, ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s)];
Table[Simplify[T[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
PROG
(PARI)
T(n, k) = ([1, 2; k, 0]^n)[1, 1] ;
export(T)
for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))
CROSSREFS
Cf. A350467 (main diagonal), A352361 (Fibonacci polynomials), A352362 (Lucas polynomials).
Sequence in context: A254101 A349025 A348963 * A277604 A112475 A347232
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 19 2022
STATUS
approved