login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352362
Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials.
4
2, 2, 0, 2, 1, 2, 2, 2, 3, 0, 2, 3, 6, 4, 2, 2, 4, 11, 14, 7, 0, 2, 5, 18, 36, 34, 11, 2, 2, 6, 27, 76, 119, 82, 18, 0, 2, 7, 38, 140, 322, 393, 198, 29, 2, 2, 8, 51, 234, 727, 1364, 1298, 478, 47, 0, 2, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 2
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Lucas Polynomial
FORMULA
T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1.
T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k.
T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)).
T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1.
EXAMPLE
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
--------------------------------------------------------------
[0] 2, 0, 2, 0, 2, 0, 2, 0, 2, ... A010673
[1] 2, 1, 3, 4, 7, 11, 18, 29, 47, ... A000032
[2] 2, 2, 6, 14, 34, 82, 198, 478, 1154, ... A002203
[3] 2, 3, 11, 36, 119, 393, 1298, 4287, 14159, ... A006497
[4] 2, 4, 18, 76, 322, 1364, 5778, 24476, 103682, ... A014448
[5] 2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, ... A087130
[6] 2, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, ... A085447
[7] 2, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, ... A086902
[8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594
[9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798
MAPLE
T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k:
seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10);
MATHEMATICA
Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm
(* or *)
T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2;
T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2];
Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm
PROG
(PARI)
T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ;
export(T)
for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))
CROSSREFS
Cf. A320570 (main diagonal), A114525, A309220 (variant), A117938 (variant), A352361 (Fibonacci polynomials), A350470 (Jacobsthal polynomials).
Sequence in context: A050949 A074943 A272011 * A236374 A045719 A114906
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 18 2022
STATUS
approved