login
A352361
Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.
45
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
OFFSET
0,13
COMMENTS
From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)
LINKS
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
FORMULA
A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)
EXAMPLE
Array, A(n,k), starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
-------------------------------------------------------------------------
[0] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... A000035;
[1] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... A000045;
[2] 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ... A000129;
[3] 0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, ... A006190;
[4] 0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, ... A001076;
[5] 0, 1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, ... A052918;
[6] 0, 1, 6, 37, 228, 1405, 8658, 53353, 328776, 2026009, ... A005668;
[7] 0, 1, 7, 50, 357, 2549, 18200, 129949, 927843, 6624850, ... A054413;
[8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
[9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
| | | | A054602 | A124152;
| | A001477;
Antidiagonals, T(n, k), begin as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 1;
0, 1, 2, 2, 0;
0, 1, 3, 5, 3, 1;
0, 1, 4, 10, 12, 5, 0;
0, 1, 5, 17, 33, 29, 8, 1;
0, 1, 6, 26, 72, 109, 70, 13, 0;
0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
MAPLE
seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
MATHEMATICA
Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
(* or *)
A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
PROG
(PARI)
A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
export(A)
for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
(Magma)
A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
[A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
(SageMath)
def A352361(n, k): return lucas_number1(k, n-k, -1)
flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024
CROSSREFS
Other versions of this array are A073133, A157103, A172236.
Rows n: A000035 (n=0), A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9).
Columns k: A000004 (k=0), A000012 (k=1), A001477 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Cf. A084844 (main diagonal), A352362 (Lucas polynomials), A350470 (Jacobsthal polynomials).
Sums include: A304357 (row sums), A304359.
Cf. A084845.
Sequence in context: A136438 A370063 A059848 * A036865 A242249 A125226
KEYWORD
nonn,easy,tabl,changed
AUTHOR
Peter Luschny, Mar 18 2022
STATUS
approved