OFFSET
0,13
COMMENTS
From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)
LINKS
G. C. Greubel, Antidiagonals n = 0..50, flattened
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
FORMULA
A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)
EXAMPLE
Array, A(n,k), starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
-------------------------------------------------------------------------
[0] 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... A000035;
[1] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... A000045;
[2] 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ... A000129;
[3] 0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, ... A006190;
[4] 0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, ... A001076;
[5] 0, 1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, ... A052918;
[6] 0, 1, 6, 37, 228, 1405, 8658, 53353, 328776, 2026009, ... A005668;
[7] 0, 1, 7, 50, 357, 2549, 18200, 129949, 927843, 6624850, ... A054413;
[8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
[9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
| | A001477;
| A000012;
Antidiagonals, T(n, k), begin as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 1;
0, 1, 2, 2, 0;
0, 1, 3, 5, 3, 1;
0, 1, 4, 10, 12, 5, 0;
0, 1, 5, 17, 33, 29, 8, 1;
0, 1, 6, 26, 72, 109, 70, 13, 0;
0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
MAPLE
seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
MATHEMATICA
Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
(* or *)
A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
PROG
(PARI)
A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
export(A)
for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
(Magma)
A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
[A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
(SageMath)
def A352361(n, k): return lucas_number1(k, n-k, -1)
flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Mar 18 2022
STATUS
approved