login
A352358
Expansion of e.g.f. 1/(1 - Sum_{k>=1} binomial(k+3,4) * x^k/k!).
1
1, 1, 7, 51, 509, 6390, 96036, 1684284, 33760588, 761287221, 19074162865, 525696741801, 15805694091243, 514818296979974, 18058391314446224, 678683621386945560, 27207234575709663516, 1158858397815372736601, 52263672918705232821477
OFFSET
0,3
FORMULA
E.g.f.: 1/(1 - (x + 3*x^2/2 + x^3/2 + x^4/24)*exp(x)).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(k+3,4) * binomial(n,k) * a(n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-(x+3*x^2/2+x^3/2+x^4/24)*exp(x))))
(PARI) a(n) = if(n==0, 1, sum(k=1, n, binomial(k+3, 4)*binomial(n, k)*a(n-k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 13 2022
STATUS
approved