The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246572 G.f.: sqrt( Sum_{n>=0} x^n / (1-x)^(4*n+1) * [Sum_{k=0..2*n} C(2*n,k)^2 * x^k]^2 ). 4
 1, 1, 7, 51, 425, 3879, 36527, 355333, 3531175, 35673875, 365179885, 3777991337, 39430009247, 414567124053, 4386228722281, 46659584847835, 498701253293129, 5352318710976505, 57655365854918487, 623105208980304843, 6753999316026236871, 73403038257774972101, 799674458063926645329 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Self-convolution equals A246570. LINKS Table of n, a(n) for n=0..22. FORMULA G.f.: A(x) = 1 + x + 7*x^2 + 51*x^3 + 425*x^4 + 3879*x^5 + 36527*x^6 +... such that A(x)^2 = 1/(1-x) + x/(1-x)^5 * (1 + 2^2*x + x^2)^2 + x^2/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2 + x^3/(1-x)^13 * (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +... Explicitly, A(x)^2 = 1 + 2*x + 15*x^2 + 116*x^3 + 1001*x^4 + 9322*x^5 + 89363*x^6 +...+ A246570(n)*x^n +... PROG (PARI) /* By definition: */ {a(n)=local(A=1); A = sqrt( sum(m=0, n, x^m/(1-x)^(4*m+1) * sum(k=0, 2*m, binomial(2*m, k)^2 * x^k)^2 +x*O(x^n)) ); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A246563, A246570, A246571, A246573. Sequence in context: A273055 A019472 A219306 * A230883 A304939 A352358 Adjacent sequences: A246569 A246570 A246571 * A246573 A246574 A246575 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 09:40 EDT 2024. Contains 375159 sequences. (Running on oeis4.)