The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246571 G.f.: Sum_{n>=0} x^n / (1-x)^(4*n+3) * [Sum_{k=0..2*n+1} C(2*n+1,k)^2 * x^k]^2. 5
 1, 6, 39, 340, 3041, 28718, 279987, 2788464, 28256709, 290124182, 3010689527, 31516942060, 332347297141, 3526399820374, 37616896717155, 403127408462816, 4337723615579781, 46842172878701486, 507454305359968827, 5513119883595629556, 60050379276555861857, 655611405802102543086 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A bisection of A246563. Self-convolution of A246573. LINKS Vaclav Kotesovec, Recurrence (of order 8) FORMULA a(n) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-k-j+1,k)^2 * C(k,j)^2. EXAMPLE G.f.: A(x) = 1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +... where A(x) = 1/(1-x)^3 * (1 + x)^2 + x/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2 + x^2/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2 + x^3/(1-x)^15 * (1 + 7^2*x + 21^2*x^2 + 35^2*x^3 + 35^2*x^4 + 21^2*x^5 + 7^2*x^6 + x^7)^2 +... The square-root of the g.f. is an integer series: A(x)^(1/2) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 + 858739*x^7 + 8517503*x^8 + 85867417*x^9 +...+ A246573(n)*x^n +... MATHEMATICA Table[Sum[Sum[Binomial[2*n-k-j+1, k]^2 * Binomial[k, j]^2, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 02 2014 *) PROG (PARI) /* By definition: */ {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(4*m+3) * sum(k=0, 2*m+1, binomial(2*m+1, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)} for(n=0, 35, print1(a(n), ", ")) (PARI) /* From a formula for a(n): */ {a(n)=sum(k=0, n, sum(j=0, min(k, 2*n-2*k+1), binomial(2*n-k-j+1, k)^2 * binomial(k, j)^2 ))} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A246563, A246570, A246572, A246573. Sequence in context: A058191 A113347 A265953 * A031972 A308861 A124577 Adjacent sequences:  A246568 A246569 A246570 * A246572 A246573 A246574 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 01:37 EST 2021. Contains 349426 sequences. (Running on oeis4.)