login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246571
G.f.: Sum_{n>=0} x^n / (1-x)^(4*n+3) * [Sum_{k=0..2*n+1} C(2*n+1,k)^2 * x^k]^2.
5
1, 6, 39, 340, 3041, 28718, 279987, 2788464, 28256709, 290124182, 3010689527, 31516942060, 332347297141, 3526399820374, 37616896717155, 403127408462816, 4337723615579781, 46842172878701486, 507454305359968827, 5513119883595629556, 60050379276555861857, 655611405802102543086
OFFSET
0,2
COMMENTS
A bisection of A246563.
Self-convolution of A246573.
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-k-j+1,k)^2 * C(k,j)^2.
EXAMPLE
G.f.: A(x) = 1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +...
where
A(x) = 1/(1-x)^3 * (1 + x)^2 + x/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2
+ x^2/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ x^3/(1-x)^15 * (1 + 7^2*x + 21^2*x^2 + 35^2*x^3 + 35^2*x^4 + 21^2*x^5 + 7^2*x^6 + x^7)^2 +...
The square-root of the g.f. is an integer series:
A(x)^(1/2) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 + 858739*x^7 + 8517503*x^8 + 85867417*x^9 +...+ A246573(n)*x^n +...
MATHEMATICA
Table[Sum[Sum[Binomial[2*n-k-j+1, k]^2 * Binomial[k, j]^2, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 02 2014 *)
PROG
(PARI) /* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(4*m+3) * sum(k=0, 2*m+1, binomial(2*m+1, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) /* From a formula for a(n): */
{a(n)=sum(k=0, n, sum(j=0, min(k, 2*n-2*k+1), binomial(2*n-k-j+1, k)^2 * binomial(k, j)^2 ))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2014
STATUS
approved