login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246571 G.f.: Sum_{n>=0} x^n / (1-x)^(4*n+3) * [Sum_{k=0..2*n+1} C(2*n+1,k)^2 * x^k]^2. 5
1, 6, 39, 340, 3041, 28718, 279987, 2788464, 28256709, 290124182, 3010689527, 31516942060, 332347297141, 3526399820374, 37616896717155, 403127408462816, 4337723615579781, 46842172878701486, 507454305359968827, 5513119883595629556, 60050379276555861857, 655611405802102543086 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A bisection of A246563.
Self-convolution of A246573.
LINKS
Vaclav Kotesovec, Recurrence (of order 8)
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-k-j+1,k)^2 * C(k,j)^2.
EXAMPLE
G.f.: A(x) = 1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +...
where
A(x) = 1/(1-x)^3 * (1 + x)^2 + x/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2
+ x^2/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ x^3/(1-x)^15 * (1 + 7^2*x + 21^2*x^2 + 35^2*x^3 + 35^2*x^4 + 21^2*x^5 + 7^2*x^6 + x^7)^2 +...
The square-root of the g.f. is an integer series:
A(x)^(1/2) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 + 858739*x^7 + 8517503*x^8 + 85867417*x^9 +...+ A246573(n)*x^n +...
MATHEMATICA
Table[Sum[Sum[Binomial[2*n-k-j+1, k]^2 * Binomial[k, j]^2, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 02 2014 *)
PROG
(PARI) /* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(4*m+3) * sum(k=0, 2*m+1, binomial(2*m+1, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 35, print1(a(n), ", "))
(PARI) /* From a formula for a(n): */
{a(n)=sum(k=0, n, sum(j=0, min(k, 2*n-2*k+1), binomial(2*n-k-j+1, k)^2 * binomial(k, j)^2 ))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A113347 A265953 A356335 * A031972 A356439 A308861
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 21:44 EDT 2024. Contains 374288 sequences. (Running on oeis4.)