login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031972 a(n) = Sum_{k=1..n} n^k. 10
0, 1, 6, 39, 340, 3905, 55986, 960799, 19173960, 435848049, 11111111110, 313842837671, 9726655034460, 328114698808273, 11966776581370170, 469172025408063615, 19676527011956855056, 878942778254232811937, 41660902667961039785742, 2088331858752553232964199 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sum of lengths of longest ending contiguous subsequences with the same value over all s in {1,...,n}^n: a(n) = Sum_{k=1..n} k*A228273(n,k). a(2) = 6 = 2+1+1+2: [1,1], [1,2], [2,1], [2,2]. - Alois P. Heinz, Aug 19 2013

a(n) is the expected wait time to see the contiguous subword 11...1 (n copies of 1) over all infinite sequences on alphabet {1,2,...,n}. - Geoffrey Critzer, May 19 2014

a(n) is the number of sequences of k elements from {1,2,...,n}, where 1<=k<=n. For example, a(2) = 6, counting the sequences, [1], [2], [1,1], [1,2], [2,1], [2,2]. Equivalently, a(n) is the number of bar graphs having a height and width of at most n. - Emeric Deutsch, Jan 24 2017.

In base n, a(n) has n+1 digits: n 1's followed by a 0. - Mathew Englander, Oct 20 2020

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..386

A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.

FORMULA

a(0)=0, a(1)=1; for n>1 a(n) = (n^(n+1)-1)/(n-1) - 1. - Benoit Cloitre, Aug 17 2002

a(n) = A031973(n)-1 for n>0. - Robert G. Wilson v, Apr 15 2015

a(n) = n*A023037(n) = n^n - 1 + A023037(n). - Mathew Englander, Oct 20 2020

MAPLE

a:= n-> `if`(n<2, n, (n^(n+1)-n)/(n-1)):

seq(a(n), n=0..20);  # Alois P. Heinz, Aug 15 2013

MATHEMATICA

f[n_]:=Sum[n^k, {k, n}]; Array[f, 30] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)

PROG

(Haskell)

a031972 n = sum $ take n $ iterate (* n) n

-- Reinhard Zumkeller, Nov 22 2014

(MAGMA) [1] cat [(n^(n+1)-n)/(n-1): n in [2..20]]; // Vincenzo Librandi, Apr 16 2015

CROSSREFS

Main diagonal of A228275.

Cf. A031973, A228273, A023037, A226238.

Sequence in context: A113347 A265953 A246571 * A308861 A124577 A006678

Adjacent sequences:  A031969 A031970 A031971 * A031973 A031974 A031975

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 11 1999

EXTENSIONS

a(0)=0 prepended by Alois P. Heinz, Oct 22 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)