The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023037 a(n) = n^0+n^1+...+n^(n-1), or a(n) = (n^n-1)/(n-1) with a(0)=0; a(1)=1. 28
 0, 1, 3, 13, 85, 781, 9331, 137257, 2396745, 48427561, 1111111111, 28531167061, 810554586205, 25239592216021, 854769755812155, 31278135027204241, 1229782938247303441, 51702516367896047761, 2314494592664502210319, 109912203092239643840221 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For prime n, a(n) is conjectured to be the period of Bell numbers (mod n). See A054767. - T. D. Noe, Oct 12 2007 For prime n, a(n) is a multiple of the period of Bell numbers mod n (and conjectured to be exactly the period, as mentioned above). - Charles R Greathouse IV, Jul 31 2012 For n >= 1, a(n) is the number whose base n representation is a string of n ones. For example, 11111 in base 5 is a(5) = 781. - Melvin Peralta, May 23 2016 LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..387 (first 101 terms from T. D. Noe) W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16. FORMULA a(n) = A125118(n,n-1) for n>1. - Reinhard Zumkeller, Nov 21 2006 a(n) = [x^n] x/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017 EXAMPLE a(3) = 3^0 + 3^1 + 3^2 = 1+3+9 = 13. MAPLE A023037:=n->add(n^i, i=0..n-1): seq(A023037(n), n=0..25); # Wesley Ivan Hurt, May 28 2016 MATHEMATICA Join[{0, 1}, Table[(n^n-1)/(n-1), {n, 2, 20}]] (* Harvey P. Dale, Aug 01 2014 *) PROG (Sage) [lucas_number1(n, n+1, n) for n in range(0, 19)] # Zerinvary Lajos, May 16 2009 (PARI) a(n) = if(n==1, 1, (n^n-1)/(n-1)); \\ Altug Alkan, Oct 04 2017 CROSSREFS Cf. A001039, A054767, A088790 (n such that a(n) is prime), A125118. Sequence in context: A125500 A121679 A246387 * A157451 A188204 A152112 Adjacent sequences:  A023034 A023035 A023036 * A023038 A023039 A023040 KEYWORD nonn,easy AUTHOR EXTENSIONS Entry improved by Tobias Nipkow (nipkow(AT)in.tum.de). STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 10 05:09 EDT 2020. Contains 335572 sequences. (Running on oeis4.)