login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354436 a(n) = n! * Sum_{k=0..n} k^(n-k)/k!. 16
1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x)).
a(n) ~ sqrt(Pi) * exp((2*n-1)/(2*LambertW(exp(1/2)*(2*n-1)/4)) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(1/2)*(2*n-1)/4)) * 2^n * LambertW(exp(1/2)*(2*n-1)/4)^n). - Vaclav Kotesovec, May 28 2022
MATHEMATICA
Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)/k!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
(Python)
from math import factorial
def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022
CROSSREFS
Sequence in context: A349582 A246387 A023037 * A157451 A188204 A152112
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 28 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 4 15:50 EDT 2023. Contains 365885 sequences. (Running on oeis4.)