The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A354436 a(n) = n! * Sum_{k=0..n} k^(n-k)/k!. 16
 1, 1, 3, 13, 85, 801, 10231, 168253, 3437673, 85162465, 2511412651, 86805640461, 3469622549053, 158523442439233, 8198514736542495, 476003264246418301, 30804251925861439441, 2207978115389469465153, 174304316334466458575443 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..18. FORMULA E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x)). a(n) ~ sqrt(Pi) * exp((2*n-1)/(2*LambertW(exp(1/2)*(2*n-1)/4)) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(1/2)*(2*n-1)/4)) * 2^n * LambertW(exp(1/2)*(2*n-1)/4)^n). - Vaclav Kotesovec, May 28 2022 MATHEMATICA Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *) PROG (PARI) a(n) = n!*sum(k=0, n, k^(n-k)/k!); (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x))))) (Python) from math import factorial def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022 CROSSREFS Cf. A006153, A026898, A010844, A277452, A277506, A354437. Sequence in context: A349582 A246387 A023037 * A157451 A188204 A152112 Adjacent sequences: A354433 A354434 A354435 * A354437 A354438 A354439 KEYWORD nonn AUTHOR Seiichi Manyama, May 28 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 15:50 EDT 2023. Contains 365885 sequences. (Running on oeis4.)