OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=0} x^k / (k! * (1 - k*x)).
a(n) ~ sqrt(Pi) * exp((2*n-1)/(2*LambertW(exp(1/2)*(2*n-1)/4)) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(1/2)*(2*n-1)/4)) * 2^n * LambertW(exp(1/2)*(2*n-1)/4)^n). - Vaclav Kotesovec, May 28 2022
MATHEMATICA
Join[{1}, Table[n!*Sum[k^(n-k)/k!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 28 2022 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)/k!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k*x)))))
(Python)
from math import factorial
def A354436(n): return sum(factorial(n)*k**(n-k)//factorial(k) for k in range(n+1)) # Chai Wah Wu, May 28 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 28 2022
STATUS
approved