login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354438
Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.
2
0, 1, 1, 2, 0, 2, 3, 3, 3, 3, 4, 2, 4, 2, 4, 5, 5, 5, 5, 5, 5, 6, 4, 0, 4, 0, 4, 6, 7, 7, 1, 1, 1, 1, 7, 7, 8, 6, 8, 0, 2, 0, 8, 6, 8, 9, 9, 9, 9, 3, 3, 9, 9, 9, 9, 10, 8, 10, 8, 10, 2, 10, 8, 10, 8, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
OFFSET
0,4
COMMENTS
The nonnegative integers together with A form an abelian group; A225901 gives inverse elements.
Each row is a permutation of the nonnegative integers.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Rémy Sigrist, Colored representation of the array A(n, k) for n, k < 7! (the hue is function of A(n, k), black pixels correspond to 0's)
FORMULA
A(n, k) = A(k, n).
A(m, A(n, k)) = A(A(m, n), k).
A(n, 0) = n.
A(n, k) = 0 iff k = A225901(n).
A(n, 1) = A004442(n).
EXAMPLE
Square array A(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---+----------------------------------------------------------------
0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1| 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2| 2 3 4 5 0 1 8 9 10 11 6 7 14 15 16 17
3| 3 2 5 4 1 0 9 8 11 10 7 6 15 14 17 16
4| 4 5 0 1 2 3 10 11 6 7 8 9 16 17 12 13
5| 5 4 1 0 3 2 11 10 7 6 9 8 17 16 13 12
6| 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
7| 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20
8| 8 9 10 11 6 7 14 15 16 17 12 13 20 21 22 23
9| 9 8 11 10 7 6 15 14 17 16 13 12 21 20 23 22
10| 10 11 6 7 8 9 16 17 12 13 14 15 22 23 18 19
11| 11 10 7 6 9 8 17 16 13 12 15 14 23 22 19 18
12| 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3
13| 13 12 15 14 17 16 19 18 21 20 23 22 1 0 3 2
14| 14 15 16 17 12 13 20 21 22 23 18 19 2 3 4 5
15| 15 14 17 16 13 12 21 20 23 22 19 18 3 2 5 4
PROG
(PARI) A(n, k, s=i->i+1) = { my (v=0, f=1, r); for (i=1, oo, if (n==0 && k==0, return (v), r=s(i); v+=f*((n+k)%r); f*=r; n\=r; k\=r)) }
CROSSREFS
Cf. A003987, A004442, A108731, A225901, A354470 (primorial base analog).
Sequence in context: A307297 A307301 A307300 * A354470 A141692 A261097
KEYWORD
nonn,tabl,base
AUTHOR
Rémy Sigrist, May 28 2022
STATUS
approved