login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.
2

%I #15 Jan 05 2024 12:29:34

%S 0,1,1,2,0,2,3,3,3,3,4,2,4,2,4,5,5,5,5,5,5,6,4,0,4,0,4,6,7,7,1,1,1,1,

%T 7,7,8,6,8,0,2,0,8,6,8,9,9,9,9,3,3,9,9,9,9,10,8,10,8,10,2,10,8,10,8,

%U 10,11,11,11,11,11,11,11,11,11,11,11,11

%N Square array A(n, k), n, k >= 0, read by antidiagonals; the factorial base expansion of A(n, k) is obtained by adding componentwise and reducing modulo their radix the digits of the factorial base expansions of n and k.

%C The nonnegative integers together with A form an abelian group; A225901 gives inverse elements.

%C Each row is a permutation of the nonnegative integers.

%H Andrew Howroyd, <a href="/A354438/b354438.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals)

%H Rémy Sigrist, <a href="/A354438/a354438.png">Colored representation of the array A(n, k) for n, k < 7!</a> (the hue is function of A(n, k), black pixels correspond to 0's)

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F A(n, k) = A(k, n).

%F A(m, A(n, k)) = A(A(m, n), k).

%F A(n, 0) = n.

%F A(n, k) = 0 iff k = A225901(n).

%F A(n, 1) = A004442(n).

%e Square array A(n, k) begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e ---+----------------------------------------------------------------

%e 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e 1| 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

%e 2| 2 3 4 5 0 1 8 9 10 11 6 7 14 15 16 17

%e 3| 3 2 5 4 1 0 9 8 11 10 7 6 15 14 17 16

%e 4| 4 5 0 1 2 3 10 11 6 7 8 9 16 17 12 13

%e 5| 5 4 1 0 3 2 11 10 7 6 9 8 17 16 13 12

%e 6| 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

%e 7| 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20

%e 8| 8 9 10 11 6 7 14 15 16 17 12 13 20 21 22 23

%e 9| 9 8 11 10 7 6 15 14 17 16 13 12 21 20 23 22

%e 10| 10 11 6 7 8 9 16 17 12 13 14 15 22 23 18 19

%e 11| 11 10 7 6 9 8 17 16 13 12 15 14 23 22 19 18

%e 12| 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3

%e 13| 13 12 15 14 17 16 19 18 21 20 23 22 1 0 3 2

%e 14| 14 15 16 17 12 13 20 21 22 23 18 19 2 3 4 5

%e 15| 15 14 17 16 13 12 21 20 23 22 19 18 3 2 5 4

%o (PARI) A(n,k, s=i->i+1) = { my (v=0, f=1, r); for (i=1, oo, if (n==0 && k==0, return (v), r=s(i); v+=f*((n+k)%r); f*=r; n\=r; k\=r)) }

%Y Cf. A003987, A004442, A108731, A225901, A354470 (primorial base analog).

%K nonn,tabl,base

%O 0,4

%A _Rémy Sigrist_, May 28 2022