login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354433
a(n) is the denominator of the sum of the reciprocals of the nonprime divisors of n.
2
1, 1, 1, 4, 1, 6, 1, 8, 9, 10, 1, 2, 1, 14, 15, 16, 1, 3, 1, 5, 21, 22, 1, 3, 25, 26, 27, 14, 1, 30, 1, 32, 33, 34, 35, 36, 1, 38, 39, 20, 1, 42, 1, 22, 5, 46, 1, 4, 49, 25, 51, 13, 1, 18, 55, 2, 57, 58, 1, 30, 1, 62, 63, 64, 65, 66, 1, 17, 69, 14, 1, 8, 1, 74, 25
OFFSET
1,4
LINKS
FORMULA
a(p) = 1 for prime p. - Michael S. Branicky, May 28 2022
EXAMPLE
1, 1, 1, 5/4, 1, 7/6, 1, 11/8, 10/9, 11/10, 1, 3/2, 1, 15/14, 16/15, 23/16, ...
MATHEMATICA
Table[DivisorSum[n, 1/# &, !PrimeQ[#] &], {n, 75}] // Denominator
PROG
(PARI) a(n) = denominator(sumdiv(n, d, if(!isprime(d), 1/d))) \\ Michael S. Branicky, May 28 2022
(Python)
from fractions import Fraction
from sympy import divisors, isprime
def a(n): return sum(Fraction(1, d) for d in divisors(n, generator=True) if not isprime(d)).denominator
print([a(n) for n in range(1, 76)]) # Michael S. Branicky, May 28 2022
(Python)
from math import prod
from fractions import Fraction
from sympy import factorint
def A354433(n):
f = factorint(n)
return (Fraction(prod(p**(e+1)-1 for p, e in f.items()), prod(p-1 for p in f)*n) - sum(Fraction(1, p) for p in f)).denominator # Chai Wah Wu, May 28 2022
CROSSREFS
Cf. A007947, A017666, A018252, A023890, A354432 (numerators).
Sequence in context: A326478 A324118 A100796 * A378664 A005451 A135683
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 28 2022
STATUS
approved