login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135683
Duplicate of A005451.
4
1, 1, 1, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 14, 15, 16, 1, 18, 1, 20, 21, 22, 1, 24, 25, 26, 27, 28, 1, 30, 1, 32, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 49, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63
OFFSET
1,4
COMMENTS
Previous name was: a(n) = 1 if n is a prime number, otherwise, a(n) = n.
REFERENCES
Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.
LINKS
FORMULA
a(n) = A088140(n), n >= 3. - R. J. Mathar, Oct 28 2008
a(n) = gcd(n, (n!*n!!)/n^2). - Lechoslaw Ratajczak, Mar 09 2019
a(n) = A005451(n), for n >= 2. - G. C. Greubel, Nov 22 2022
MAPLE
seq(denom((1 + (n-1)!)/n), n=1..80); # G. C. Greubel, Nov 22 2022
MATHEMATICA
Table[If[PrimeQ[n], 1, n], {n, 70}] (* Vincenzo Librandi, Feb 22 2013 *)
a[n_] := ((n-1)! + 1)/n - Floor[(n-1)!/n] // Denominator; Table[a[n] , {n, 1, 63}] (* Jean-François Alcover, Jul 17 2013, after Minac's formula *)
PROG
(Magma) [IsPrime(n) select 1 else n: n in [1..70]]; // Vincenzo Librandi, Feb 22 2013
(Sage)
def A135683(n):
if n == 4: return n
f = factorial(n-1)
return 1/((f + 1)/n - f//n)
[A135683(n) for n in (1..63)] # Peter Luschny, Oct 16 2013
CROSSREFS
Sequence in context: A354433 A378664 A005451 * A113520 A232597 A197008
KEYWORD
dead
AUTHOR
Mohammad K. Azarian, Dec 01 2007
STATUS
approved