OFFSET
1,4
COMMENTS
Denominator of (1 + Gamma(n))/n.
REFERENCES
Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Achilleas Sinefakopoulos, Problem 10578 (Submitted solution.)
H. S. Wilf, Problem 10578, Amer. Math. Monthly, 104 (1997), 270.
FORMULA
Define b(n) = ( (n-1)*(n^2-3*n+1)*b(n-1) - (n-2)^3*b(n-2) )/(n*(n-3)); b(2) = b(3) = 1; a(n) = denominator(b(n)).
a(n) = A088140(n), n >= 3. - R. J. Mathar, Oct 28 2008
a(n) = gcd(n, (n!*n!!)/n^2). - Lechoslaw Ratajczak, Mar 09 2019
MAPLE
seq(denom((1 + (n-1)!)/n), n=1..80); # G. C. Greubel, Nov 22 2022
MATHEMATICA
Table[If[PrimeQ[n], 1, n], {n, 70}] (* Vincenzo Librandi, Feb 22 2013 *)
a[n_] := ((n-1)! + 1)/n - Floor[(n-1)!/n] // Denominator; Table[a[n] , {n, 70}] (* Jean-François Alcover, Jul 17 2013, after Minac's formula *)
Table[Denominator[(1 + Gamma[n])/n], {n, 2, 70}] (* G. C. Greubel, Nov 22 2022 *)
PROG
(Magma) [IsPrime(n) select 1 else n: n in [1..70]]; // Vincenzo Librandi, Feb 22 2013
(Magma) [Denominator((1 + Factorial(n-1))/n): n in [1..70]]; // G. C. Greubel, Nov 22 2022
(Sage)
def A005451(n):
if n == 4: return n
f = factorial(n-1)
return 1/((f + 1)/n - f//n)
[A005451(n) for n in (1..71)] # Peter Luschny, Oct 16 2013
(SageMath) [denominator((1+gamma(n))/n) for n in range(1, 71)] # G. C. Greubel, Nov 22 2022
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
Name edited and a(1)=1 prepended by G. C. Greubel, Nov 22 2022. Name further edited by N. J. A. Sloane, Nov 22 2022
STATUS
approved