OFFSET
1,2
COMMENTS
This sequence was the subject of the 1st problem of the 9th Irish Mathematical Olympiad 1996 with gcd((n + 1)!, n! + 1) = a(n+1) for n >= 0 (see formula Jan 23 2009 and link). - Bernard Schott, Jul 22 2020
For sequence A with terms a(1), a(2), a(3),... , let R(0) = 1 and for k >= 1 let R(k) = rad(a(1)*a(2)*...*a(k)). Define the Rad-transform of A to be R(n)/R(n-1); n >= 1, where rad is A007947. Then this sequence is the Rad transform of the positive integers, A = A000027. - David James Sycamore, Apr 19 2024
REFERENCES
Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.
L. Tesler, "Factorials and Primes", Math. Bulletin of the Bronx H.S. of Science (1961), 5-10. [From Larry Tesler (tesler(AT)pobox.com), Nov 08 2010]
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
The IMO Compendium, Problem 1, 9th Irish Mathematical Olympiad 1996.
FORMULA
From Peter Luschny, Nov 29 2003: (Start)
a(n) = denominator(n! * Sum_{m=0..n} (-1)^m*m!*Stirling2(n+1, m+1)/(m+1)).
a(n) = denominator(n! * Sum_{m=0..n} (-1)^m*m!*Stirling2(n, m)/(m+1)). (End)
From Alexander Adamchuk, May 20 2006: (Start)
a(n) = numerator((n/2)/(n-1)!) + floor(2/n) - 2*floor(1/n).
a(n) = gcd(n,(n-1)!+1). - Jaume Oliver Lafont, Jul 17 2008, Jan 23 2009
a(1) = 1, a(2) = 2, then a(n) = 1 or a(n) = n = prime(m) = (Product q+k, k = 1 .. 2*floor(n/2+1)-q) / (Product prime(i)^(Sum (floor((n+1)/(prime(i)^w)) - floor(q/(prime(i)^w)) ), w = 1 .. floor(log[base prime(i)] n+1) ), i = 2 .. m-1) where q = prime(m-1). - Larry Tesler (tesler(AT)pobox.com), Nov 08 2010
a(n) = (n!*HarmonicNumber(n) mod n)+1, n != 4. - Gary Detlefs, Dec 03 2011
a(n) = denominator of (n!)/n^(3/2). - Arkadiusz Wesolowski, Dec 04 2011
a(n) = n^A010051(n). - Wesley Ivan Hurt, Jun 16 2013
Conjecture: for n > 3, a(n) = gcd(n, A007406(n-1)). - Thomas Ordowski, Aug 02 2019
EXAMPLE
From Larry Tesler (tesler(AT)pobox.com), Nov 08 2010: (Start)
a(9) = (8*9*10)/(2^((5+2+1)-(3+1+0))*3^((3+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 1 [composite].
a(10) = (8*9*10)/(2^((5+2+1)-(3+1+0))*3^((3+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 1 [composite].
a(11) = (8*9*10*11*12)/(2^((6+3+1)-(3+1+0))*3^((4+1)-(2+0))*5^((2)-(1))*7^((1)-(1))) = 11 [prime]. (End)
MATHEMATICA
digits=200; a=Table[If[PrimePi[n]-PrimePi[n-1]>0, n, 1], {n, 1, digits}]; Table[Numerator[(n/2)/(n-1)! ] + Floor[2/n] - 2*Floor[1/n], {n, 1, 200}] (* Alexander Adamchuk, May 20 2006 *)
Range@ 120 /. k_ /; CompositeQ@ k -> 1 (* or *)
Table[n Boole@ PrimeQ@ n, {n, 120}] /. 0 -> 1 (* or *)
Table[If[PrimeQ@ n, n, 1], {n, 120}] (* Michael De Vlieger, Jul 02 2016 *)
PROG
(Sage)
def A089026(n):
if n == 4: return 1
f = factorial(n-1)
return (f + 1) - n*(f//n)
[A089026(n) for n in (1..96)] # Peter Luschny, Oct 16 2013
(Magma) [IsPrime(n) select n else 1: n in [1..96]]; // Marius A. Burtea, Aug 02 2019
(Python)
from sympy import isprime
def a(n): return n if isprime(n) else 1
print([a(n) for n in range(1, 97)]) # Michael S. Branicky, Oct 06 2022
(MATLAB) a = [1:96]; a(isprime(a) == false) = 1; % Thomas Scheuerle, Oct 06 2022
(PARI) a(n) = n^isprime(n) \\ David A. Corneth, Oct 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 12 2003
STATUS
approved