login
A371356
Decimal expansion of Gamma(3/2) * zeta(3/2).
0
2, 3, 1, 5, 1, 5, 7, 3, 7, 3, 3, 9, 4, 1, 1, 7, 0, 0, 0, 4, 2, 5, 8, 1, 9, 4, 6, 9, 1, 1, 7, 9, 8, 1, 3, 6, 6, 6, 7, 6, 9, 2, 8, 1, 9, 9, 0, 3, 6, 2, 0, 3, 7, 4, 0, 8, 1, 9, 8, 4, 3, 7, 4, 0, 5, 3, 9, 1, 6, 2, 0, 6, 6, 7, 2, 3, 4, 4, 4, 5, 5, 7, 7, 1, 5, 7, 7, 8, 1, 2, 6, 1, 2, 7, 7, 8, 2, 5, 6, 0
OFFSET
1,1
FORMULA
Equals Pochhammer(1, 1/2) * zeta(3/2, 1).
Equals sqrt(Pi/4) * zeta(3/2).
Equals Integral_{x>=0} sqrt(x) / (exp(x) - 1).
Equals A019704 * A078434.
EXAMPLE
2.3151573733941170004258194691179813666769281990...
MAPLE
DecimalExpansion := proc(f, prec)
Digits := prec + 10: evalf(f, Digits) * 10^prec:
ListTools:-Reverse(convert(floor(%), base, 10)) end:
DecimalExpansion(sqrt(Pi/4)*Zeta(3/2), 100);
MATHEMATICA
RealDigits[Pochhammer[1, 1/2] Zeta[3/2, 1], 10, 100][[1]]
CROSSREFS
Sequence in context: A140706 A200068 A139764 * A227643 A249386 A089026
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, Mar 19 2024
STATUS
approved